I calibrated MC_F signal into Hz/rtHz unit using the transfer function from MC_F to PMC feedback signal.
Here is the diagram:

n_mcf is MC_F signal we can get at dtt. I measured n_pmc/n'_mcf using SR.

Other information I used:
G_out = 2.49/123.49 (see the document D980352-E01-C)
Fout has 1 pole at 10 Hz (see the document D980352-E01-C)
A_pzt = 371e+6/63 [Hz/V] (see elog)
F_wt has 1 pole at 100 Hz and 1 zero at 10 Hz.
Then, calibration transfer function of H is fitted as 1e+9/f [Hz/V]:

Then, the calibrated spectrum of MC_F is below:

This calibration have about 20 % error.
Compared to the spectrum in Jenne's paper (elog), above 20 Hz it seems to be laser frequency noise. But now we have extra unknown noise below 10 Hz.
Note: calibration value of laser's PZT is ~ 1MHz/V. This is reasonable compared to the data sheet of the laser. (This is calculated by combining result of H and transfer function of the circuit box1 and FSS.)
 |