40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Tue Aug 7 21:34:50 2012, Yaakov, Update, STACIS, More noise data budget.bmpbudget.fig
    Reply  Tue Aug 7 23:33:44 2012, rana, Update, STACIS, More noise data 
Message ID: 7109     Entry time: Tue Aug 7 21:34:50 2012     Reply to this: 7112
Author: Yaakov 
Type: Update 
Category: STACIS 
Subject: More noise data 

Yesterday I plugged the geophone and accelerometer output into the ADC, rather than the SR785, so I could collect for longer and take more data at once.

As per Rana's suggestion, I am also now taking the geophone output after the first op-amp in the circuitry following the geophone (a low-noise op-amp, OPA227). It acts as a buffer so I'm not just measuring other local noise sources (which explains why the geophone noise curve sort of matched the SR785 noise curve in my old plots).

With these changes, I remeasured the accelerometer and geophone noises as well as collected an ASD of a geophone sitting on the STACIS in open loop operation. I also looked up the noise specs for the various op-amps in the geophone pre-amp and high voltage board; everything I found, I added in quadrature to come up with an approximate op-amp noise value for the STACIS. All of this is plotted below:

budget.bmpbudget.fig

I left the y-axis in V/rtHz instead of converting it to m/s/rtHz so that the op-amp noise could be compared to the other noises. All sensor data was taken with the sensors horizontal (noise data taken in granite and foam).

The accelerometer and geophone noise still appear to be similar, and the op-amp noise, at least according to specs, is low compared to the other noises. This implies there's not much to gain from switching the geophones with accelerometers nor with swapping out the op-amps for lower-noise components (unless the ones I couldn't find specs for were high-noise, though it seems like mainly low-noise components were used). 

ELOG V3.1.3-