40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 7068     Entry time: Wed Aug 1 11:54:59 2012
Author: Yaakov 
Type: Summary 
Category: STACIS 
Subject: Geophone calibration and open loop gains 

This week I've looked into finding an accurate sensitivity for the geophones in the STACIS. I found that when placing a geophone and accelerometer side by side, and using the sensitivity values I had from spec sheets, the readings were very different (see eLog 7054: http://nodus.ligo.caltech.edu:8080/40m/7054).

I cut the shunt resistor off one of the STACIS geos and found it to be 4000 Ohm, which is one of the standard values for this geophone model. When it is connected to the geophone the net resistance is 2000 Ohm (I took a more careful measurement, I took the geophone out). Then the internal coil resistance should be 4000 Ohm, if they are connected in parallel. However, the geophone spec sheet does not have a sensitivity value for this exact scenario, so I'll have to find a different way to determine the calibration (maybe by putting it next to a seismometer with a known sensitivity). So I know for sure that the sensitivity value I was originally using is wrong, because it assumed an internal coil resistance of 380 Ohm, but I have to check if the value I found by forcing the geophones to agree with the accelerometers (eLog 7054 --> 0.25 (m/s)/V) is correct.

I've also been looking again at the open loop gains of the STACIS (see eLog 7058: http://nodus.ligo.caltech.edu:8080/40m/7058). Attached is what TMC, which makes the STACIS, says it should look like (with a 4000 lb load on the STACIS). Today I am taking the open loop gains into higher frequencies to get a better comparison, but the plots look quite similar to what I have so far. So if it is an unstable open loop gain, then it's at least not new.

Attachment 1: 08011201.pdf  205 kB  | Hide | Hide all
08011201.pdf 08011201.pdf
ELOG V3.1.3-