40m
QIL
Cryo_Lab
CTN
SUS_Lab
TCS_Lab
OMC_Lab
CRIME_Lab
FEA
ENG_Labs
OptContFac
Mariner
WBEEShop
|
40m Log |
Not logged in |
 |
|
Fri Jul 18 19:41:09 2008, Yoichi, Update, PSL, PMC PZT investigation 
|
Fri Jul 18 23:24:24 2008, rob, Update, PSL, PMC PZT investigation
|
Sat Jul 19 19:39:44 2008, rob, Update, PSL, PMC PZT investigation
|
|
Message ID: 701
Entry time: Fri Jul 18 23:24:24 2008
In reply to: 699
Reply to this: 702
|
Author: |
rob |
Type: |
Update |
Category: |
PSL |
Subject: |
PMC PZT investigation |
|
|
Quote: | I measured the HV coming to the PMC PZT by plugging it off from the PZT and hooking it up to a DVM.
The reading of DVM is pretty much consistent with the reading on EPICS. I got 287V on the DVM when the EPICS says 290V.
Then I used a T to monitor the same voltage while it is connected to the PZT. I attached a plot of the actual voltage measured by the DVM vs the EPICS reading.
It shows a hysteresis.
Also the actual voltage drops by more than a half when the PZT is connected. The output impedance of the HV amp is 64k (according to the schematic). If I believe this number, the impedance of the PZT should also be 64k. The current flowing the PZT is 1.6mA at 200V EPICS reading.
The impedance of the PZT directly measured by the DVM is 1.5M ohm, which is significantly different from the value expected above. I will check the actual output impedance of the HV amp later.
The capacitance of the PZT measured by the DVM is 300nF. I don't know if I can believe the DVM's ability to measure C.
I noticed that when a high voltage is applied, the actual voltage across the PZT shows a decay.
The second plot shows the step response of the actual voltage.
The voltage coming to the PZT was T-ed and reduced by a factor of 30 using a high impedance voltage divider to be recorded by an ADC.
The PMCTRANSPD channel is temporarily used to monitor this signal.
After the voltage applied to the PZT was increased abruptly (to ~230V), the actual voltage starts to exponentially decrease.
When the HV was reduced to ~30V, the actual voltage goes up. This behavior explains the weird exponential motion of the PZT feedback signal when the PMC is locked.
The cause of the actual voltage drop is not understood yet.
From the above measurements, we can almost certainly conclude that the problem of the PMC is in the PZT, not in the HV amp nor the read back. |
I'd believe the Fluke's measurement of capacitance. Here's some info from PK about the PZT:
Quote: |
But the PMC ones were something like
0.750 in. thick x 0.287 in. thick. 2 microns per 200 V displacement,
resonant frequency greater than 65 kHz. Typical capacitance is around 0.66
uF.
|
If the PZT capacitance has dropped by a factor of two, that seems like a bad sign. I don't know what to expect for a resistance value of the PZT, but I wouldn't be surprised if it's non-Ohmic. The 64k is the series resistor after the PA85, not the modeled resistance of the PZT itself. |