40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 6988     Entry time: Wed Jul 18 13:53:34 2012
Author: Yaakov 
Type: Update 
Category: STACIS 
Subject: Weekly update 

I have been working on substituting the internal geophones in the STACIS with accelerometers, and this week specifically I have been trying to modify the accelerometer signal so the STACIS PZTs respond properly.

The major problem was that the high signal amplitude caused the STACIS to oscillate uncontrollably, so I lowered all of the pots (for the z direction) and placed several BNC attenuators before the accelerometer signal enters the first amplifier board. The accelerometers now successfully provide feedback without making the STACIS unstable, as shown by this transfer function (the higher and flatter line is open loop, the lower is closed loop with accelerometers providing feedback):

really_accelFeed.GIF

The next step is to optimize the accelerometer feedback so it provides good isolation from 0.1 to 3 Hz, a span that the geophones introduced a lot of noise into. The accelerometers definitely don't introduce as much noise in that region, but don't seem to be doing much isolation either. I will also make some more quantitative plots of the platform motion (using the calibration value for the Wilcoxon accelerometers in the velocity setting with a gain of 1).

Some random discoveries I made this week which are relevant for STACIS testing:

1) Placing weight on the STACIS platform improves stability, but NOT if several blocks are placed on top of each other (they rub against each other, causing lots of vibrations).

2) The accelerometer that is providing feedback must be VERY securely fastened to the STACIS platform; even with three clamps there was extra motion that caused instability. Luckily, there's a convenient steel flange Steve showed me which has a hole that perfectly accommodates the accelerometer and doubles as a weight for the platform. Here is said flange, clamped to the STACIS platform with the accelerometer sitting in the center:

flange.JPG

 3) Using the shaker next to the STACIS (all on one platform) improves coherence between the base and platform accelerometers above around 10 Hz, but does nothing lower than that, which unfortunately is the region I'm most concerned with.

ELOG V3.1.3-