40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Dec 16 13:29:15 2011, kiwamu, Update, Green Locking, Y arm noise budget : 60Hz line noise is killing us Yarm_ALS_2011DEC16.png
    Reply  Sat Dec 17 00:00:03 2011, kiwamu, Update, Green Locking, 60 Hz line nose gone 
Message ID: 6126     Entry time: Fri Dec 16 13:29:15 2011     Reply to this: 6127
Author: kiwamu 
Type: Update 
Category: Green Locking 
Subject: Y arm noise budget : 60Hz line noise is killing us 
Along with development of the automation script, my goals last night were :
 (1) Take a noise budget when the standard ALS configuration is applied
 (2) Take a beautiful time series to show how ALS brings the cavity to the resonance point
 However I gave up goal (2) because the resultant time series were very fluctuating at 60 Hz and it wasn't so beautiful enough.
As shown in the noise budget below, the 60 Hz line noise currently dominates the arm displacement.


       About Noise Budget       

 The spectra were taken when the arm length was kept at the resonance point using the ALS servo.
So the error signal was taken from the beat-note and was fed back to ETMY.
The servo UGF was at about 100 Hz and the fine frequency discriminator was used.
The red curve in the plot is the arm displacement observed by POY11, which is an out-of-loop sensor in this case.
From the plot it is apparent that the 60 Hz line noise raises the rms to few 100 pm level.

       How to improve it ?     

According to my quick calculation if we can exclude the 60 Hz line noise from the rms integration, the rms becomes about 70 pm, which is nice.
I somehow believe this line noise comes from the ALS servo and is injected to the coil-magnet actuator.
So I propose to lower the UGF and make it lower than 60 Hz such that
the servo doesn't react to the 60 Hz line noise and hence no 60 Hz noise injection to the arm displacement.
In any case lowering the UGF is better since our ALS sensor sees only noise above 40 Hz according to the previous noise measurement (#5970)
ELOG V3.1.3-