40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Dec 1 12:27:51 2011, Zach, Metaphysics, RF System, RAM diagnosis/suppression plan? 
    Reply  Mon Dec 5 09:46:21 2011, Zach, Metaphysics, RF System, RAM diagnosis/suppression plan? 
Message ID: 6059     Entry time: Thu Dec 1 12:27:51 2011     Reply to this: 6069
Author: Zach 
Type: Metaphysics 
Category: RF System 
Subject: RAM diagnosis/suppression plan? 

It seems like there is some confusion---or disagreement---amongst the lab about how to proceed with the RAM work (as Rana mentioned at the TAC meeting, we will henceforth refer to it only as "RAM" and never as "RFAM"; those who refuse to follow this protocol will be taken out back and shot).

I would like to provide a rough outline and then request that people reply with comments, so that we can get a collective picture of how this should work. I have divided this into two sections: 1) Methodology, which is concerned with the overall goal of the testing and the procedure for meeting them, and 2) General Issues, which are broadly important regardless of the chosen methodology.

1. Methodology

There are two broad goals:

  • Characterization of extant RAM
    • Measuring the RAM levels existing in an aLIGO-type interferometer without any suppression systems
    • Modeling to estimate the effect on IFO control and corroboration with measurements where possible
      • DC RAM levels contributing offsets to IFO operating point
      • Quasi-DC RAM levels affecting long term detector tuning (e.g., sensing matrix, MICH -> DARM feedforward, etc.)
      • Audio-frequency RAM contributing noise directly via error point modulation
    • Modeling to scale/adapt results from 40m -> aLIGO
  • Mitigation
    • Developing and assessing systems for suppressing RAM
      • Passive: thermal shielding and isolation
      • Active: EOM temperature control
        • Simple temperature stabilization
        • RAM error signal

The question is: which is our goal? The first, the second, or both? If both, what priority is given to which and can/should they be done in parallel? Also, task distribution.

 

2. General Issues

These are loosely related, so they are in random order:

  • Sensing
    • Temperature
      • What is the priority/urgency of a precision AC-bridge-readout temperature sensor?
      • If priority/urgency is low, what is the priority/urgency of upgrading breadboard controller to protoboard version? The common answer will be "make the protoboard version now", but if the urgency of the final AC sensing is high, it may make sense to focus on finalizing that design (after all, other experiments are waiting on a precision temperature controller, and it is not cost-effective to make many temporary controllers as I have done for the 40m).
      • Sensor noise issues
        • What is the sensor-noise-limited temperature stabilization level?
        • What is our willingness to tolerate the thermal low-passing of the EOM can itself (i.e., what is our sensitivity to gradients)?
        • To answer the above questions, we need to perform stabilization tests with several sensors on the same can, with some in loop (averaged) and some out of loop.
        • If we determine that gradients are a problem, we may need to:
          • Design a casing for outside the EOM (inside the foam box) to make the heating uniform, or
          • We may be able to get away with a more customized heater (instead of heating the can from one side as we do now).
    • Optical RAM
      • Stochmon is a nice diagnostic tool, but do we want something better? In particular, we want to have linear signals about a zero-DC-RAM point, which requires phase
        • Where will this sensor be located?
        • What kind of PD will it be? Broadband? Multi-resonant?
        • What sort of electronics will we need? If we are going to use this as an error signal for controlling the EOM temperature, it is just as important as any other IFO readout, since it may couple into all of them.
          • RF pickup is a BIG ISSUE HERE
          • How will the demodulation phases be selected? It should be possible to take TF measurements in certain misaligned (i.e., non-resonant) conditions and adjust the relative phase between the RAM readouts and standard IFO RF readouts such that they are in phase, but this will require some thinking.
          • Lots more, I'm sure
  • Control
    • Method (overlaps some with methodology portion)
      • What is better, simple temperature stabilization or RAM feeback? (More likely, "how much better is RAM feedback?")
      • If RAM feedback is difficult or impossible to implement effectively (see below), is temperature stabilization good enough?
    • Regime
      • Depending on extant RAM levels and on achievable sensing noise, it will be unwise and/or unnecessary to have a RAM control bandwidth above some relatively low frequency (~sub Hz)
        • Gain where RAM suppression is not needed only injects noise into the system
        • This cutoff frequency is largely determined by the thermal response of the system, but additional filtering will likely be necessary to reduce higher-frequency noise coupling (e.g., nonlinear downconversion of high-frequency signals into heater dissipation, etc.)
    • Efficacy
      • If we do RAM feedback, which signal (i.e. which frequency and quadrature) do we minimize?
        • Do we achieve large common-mode reduction across all RF signals, or is there some differential component?
        • In particular, do we make some or all other control signals noisier by stabilizing/minimizing RAM in one channel?
        • If the answer is yes, can we derive an effective control signal from a linear combination of some or all individual RAM signals?

 

There are probably many other issues I have neglected, so please comment on this rough draft as you see fit!

ELOG V3.1.3-