40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 5906     Entry time: Wed Nov 16 10:08:17 2011
Author: Suresh 
Type: Update 
Category: IOO 
Subject: Effect of turning on the MC2_TRANS_PIT and YAW loops in ASC 

I turned on the two remaining loops in the ASC system to see if we can lock.   I put in some ones into the WFS_OUTPUT matrix

WFS_OUTMATRIX.png

and locked the MC2_TRANS_PIT and MC2_TRANS_YAW loops.

The effect of doing so is visible in the error signals.  The black loops are with all ASC loops off, Blue traces are with the WFS1 and 2 loops locked and Red traces are with all loops locked.  I took the red traces to a lower frequency to see if the suppression of the error signals at low frequencies is disturbed by the switching on of the MC2_TRANS loops.  They seem to be working fine without adding any perturbation above the UGF.

WFS_servo_err_20111115.png

I measured the  Transfer Function coefs (at 10Hz using the WFS Lockins)  with MC2_TRANS loops locked in this rudimentary fashion

  WFS1P WFS2P MC2TP WFS1Y WFS2Y MC2TY
MC1P -23.8541 15.2501 -24.3470 -3.3166 -2.0473 -0.1202
MC2P 29.7402 54.7689 29.5102  -0.2922 -17.4226 0.0310
MC3P 34.3612 10.7279 33.9650 6.6582 -4.0892 0.2333
MC1Y 0.9510 -6.3929 0.8722 -98.2414 -82.9129 -4.2802
MC2Y 12.0673 6.1708 11.9502 237.1172 20.7970 14.6480
MC3Y -0.8498 2.8712 -1.4195 -20.6031 111.2531 -1.5234

 

The green and blue bits are the only relevant parts since we ignore the off diagonal parts.  And most of these off diagonal coefs are indeed quite small (<5% of the max).  I have marked the not-so-small ones in yellow.

I then calculated the output matrix elements in two different ways.

a) Using a null vector in the place of MC_DoF --> MC2_TRANS transfer coefs.  The output matrix we get is

 

  WFS1P WFS2P Null Vector
MC1P -1.0000 0.8271  -0.8880
MC2P 0.0962 1.0000  0.4431
MC3P 0.9306 -0.2913  -1.0000

 

  WFS1Y WFS2Y Null Vector
MC1Y -0.2340 -0.5840 1.0000
MC2Y 1.000o -0.1551  0.4714
MC3Y -0.3613 1.0000 0.6571

 

b) Without using the null vector.  i.e. using the MC_DoF --> MC2_TRANS transfer coefs and inverting the full matrix.  The output matrix we get is

 

   WFS1P WFS2P  MC2TP
 MC1P  0.1471  -0.8880  0.8655
 MC2P  1.0000  0.4431  -0.4369
 MC3P  -0.7634  -1.0000  1.0000

 

  WFS1Y WFS2Y MC2TP
MC1Y 0.1401 1.0000 -1.0000
MC2Y 0.1449 0.4714 -0.3627
MC3Y 1.0000 0.6571 -0.6775

 

I plan to try out these two output matrices and measure the OL TFs of the MC2_TRANS and see if we can include these into ASC in a useful fashion.

Attachment 1: WFS_OUTMATRIX.png  10 kB  | Hide | Hide all
WFS_OUTMATRIX.png
ELOG V3.1.3-