40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Sep 30 17:40:03 2011, kiwamu, Update, IOO, AM / PM ratio 
    Reply  Mon Oct 3 20:02:59 2011, Suresh, Update, PSL, AM / PM ratio 
       Reply  Tue Oct 4 16:58:45 2011, Suresh, Update, PSL, AM / PM ratio 
Message ID: 5606     Entry time: Mon Oct 3 20:02:59 2011     In reply to: 5588     Reply to this: 5616
Author: Suresh 
Type: Update 
Category: PSL 
Subject: AM / PM ratio 

[Koji, Suresh]

In the previous measurement, the PDA 255 had most probably saturated at DC, since the maximum ouput voltage of PDA255 is 5V when it is driving a 50 Ohm load.  It has a bandwidth of 0 to 50MHz and so can be reliably used to measure only the 11 MHz AM peak.  In this band it has a conversion efficiency of 7000 V per Watt (optical power at 1064nm).  [Conversion efficiency:  From the data sheet we get 0.7 A/W of photo-current at 1064nm and 10^4 V/A of transimpedance]  The transimpedance at 55 MHz is not given in the data sheet.  Even if PDA255 is driving a high impedance load, at high incident power levels the bandwidth will be reduced due to finite gain x bandwidth product of the opamps involved, so the conversion efficiency at 11 MHz would not be equal to that at DC.

So Koji repeated the measurement with a lower incident light level:


V_DC = 1.07 V  with 50 Ohm termination on the multimeter.

Peak height at 11 MHz on the spectrum analyzer (50 Ohm input termination) = -48.54 dBm



a) RF_Power at 11 MHz :  -48.45 dBm = 1.4 x 10^(-8) W

b) RF_Power = [(V_rms)^2] / 50_ohm  ==> V_rms = 8.4 x 10^(-4) V

c) Optical Power at 11 MHz: [V_rms / 7000] = 1.2 x 10^(-7) W

d) Optical Power at DC =  [V_DC / 7000] = 1.46 x 10^(-4) W

e) Intensity ratio:  I_AM / I_c = 7.9 x 10^(-4) . AM:Carrier amplitude ratio is half of the intensity ratio = 4.0 x 10^(-4)

f) PM amplitude ratio from Mirko's measurement is 0.2

g) The PM to AM amplitude ratio is 506


As the AM peak is highly dependent upon the drifting EOM position in yaw, it is quite likely that a higher PM/AM ratio could occur.  But this measurement shows how small it could get if the current situation is allowed to continue.



[Mirko / Kiwamu]

 We have reviewed the AM issue and confirmed the ratio of AM vs. PM had been about 6 x103.

The ratio sounds reasonably big, but in reality we still have some amount of offsets in the LSC demod signals.

Next week, Mirko will estimate the effect from a mismatch in the MC absolute length and the modulation frequency.



 Please correct us if something is wrong in the calculations.

 According to the measurement done by Keiko (#5502):

        DC = 5.2 V

        AM @ 11 and 55 MHz = - 56 dBm = 0.35 mV (in 50 Ohm system)

Therefore the intensity modulation is 0.35 mV / 5.2 V = 6.7 x 10-5

Since the AM index is half of the intensity modulation index, our AM index is now about 3.4 x 10-5

According to Mirko's OSA measurement, the PM index have been about 0.2.

As a result,  PM/AM = 6 x 103

Quote from #5502

Measured values;

* DC power = 5.2V which is assumed to be 0.74mW according to the PDA255 manual.

*AM_f1 and AM_f2 power = -55.9 dBm = 2.5 * 10^(-9) W.



ELOG V3.1.3-