40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Sep 30 05:35:42 2011, kiwamu, Update, LSC, length fluctuations in MICH and PRCL noise.png
    Reply  Fri Sep 30 08:40:02 2011, Koji, Update, LSC, length fluctuations in MICH and PRCL 
    Reply  Sat Oct 8 04:41:07 2011, kiwamu, Update, LSC, length fluctuations in SRCL length_noise.png
       Reply  Mon Oct 10 10:14:43 2011, rana, Update, LSC, length fluctuations in SRCL 
Message ID: 5582     Entry time: Fri Sep 30 05:35:42 2011     Reply to this: 5584   5638
Author: kiwamu 
Type: Update 
Category: LSC 
Subject: length fluctuations in MICH and PRCL 

The MICH and PRCL motions have been measured in some different configurations.

According to the measurements :

      + PRCL is always noisier than MICH.

      + MICH motion becomes noisier when the configuration is Power-Recycled Michelson (PRMI).

The next actions are :

      + check the ASPD

      + check the demodulation phases

      + try different RFPDs to lock MICH

 


(Motivation)
 The lock of PRMI have been unstable for some reason.
One thing we wanted to check was the length fluctuations in MICH and PRCL.


(Measurement)
Four kinds of configuration were applied.
     (1) Power-recycled ITMX (PR-ITMX) locked with REFL33_I, acting on PRM.
     (2) Power-recycled ITMY (PR-ITMY) locked with REFL33_I, acting on PRM.
     (3) Michelson locked with AS55_Q, acting on BS.
     (4) Power-recycled Michelson locked with REFL33_I and AS55_Q, acting on PRM and BS.

In each configuration the spectrum of the length control signal was measured.
With the measured spectra the length motions were estimated by simply multiplying the actuator transfer function.
Therefore the resultant spectra are valid below the UGFs which were at about 200 Hz.
The BS and PRM actuator responses had been well-measured at AC (50 - 1000 Hz)
For the low frequency responses they were assumed to have the resonances at 1 Hz with Q of 5.
 

(Results)
The below plot shows the length noise spectra of four different configurations.
There are two things which we can easily notice from the plot.
    + PRCL (including the usual PRCL and PR-ITMs) is always noisier than MICH.
    + MICH became noisier when the power recycling was applied.
In addition to them, the MICH noise spectrum tended to have higher 3 Hz bump as the alignment gets improved.
In fact everytime when we tried to perfectly align PRMI it eventually unlocked.
I am suspecting that something funny (or stupid) is going on with the MICH control rather than the PRCL control.

noise.png

(Notes)
   BS actuator = 2.190150e-08 / f2
   PRM actuator = 2.022459e-08 /  f2
ELOG V3.1.3-