[Koji Kiwamu]
- We have checked the situation of the broken Piezo Jenna PZT (called PZT1)
- Tested PZT1 by applying a dc voltage on the cables. Found that pitch and yaw reasonably moving and the motions are well separated each other.
The pitch requires +20V to set the IPPOS spot on the QPD center.
- Made a high-voltage (actually middle voltage) amp to convert +/-10V EPICS control signal into -5 to +30V PZTout. It is working on the prototype board and will be put into the actual setup soon.
Details:
- The Piezo Jenna driver box has 4 modules. From the left-hand side, the HV module, Yaw controller, Pitch controller, and Ben abbot's connector converter.
- We checked the voltage on Ben's converter board. (Photo1)
It turned out that the red cable is the one have the driving voltage while the others stays zero.
- We hooked a 30V DC power supply between the red cable and the shield which is actually connected to the board ground.
- Applying +/-10V, we confirmed the strain gauge is reacting. If we actuated the pitch cable, we only saw the pitch strain gauge reacted. Same situation for yaw too.
- Kiwamu went to IPPOS QPD to see the spot position, while I change the voltage. We found that applying +20V to the pitch cable aligns the spot on the QPD center.
------------------------
- I started to make a small amplifier boards which converts +/-10V EPICS signals into -5V to +30V PZT outs.
- The OPAMP is OPA452 which can deal with the supply voltages upto +/-40V. We will supply +/-30V. The noninerting amp has the gain of +2.
- It uses a 15V zener diode to produce -15V reference voltage from -30V. This results the output voltage swing from -5V to +35V.
The actual maximum output is +30V because of the supply voltage.
- On the circut test bench, I have applied +/-5V sinusoidal to the input and successfully obtained +5V to +25V swing.
- The board will be put on Ben's board today. |