40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Aug 12 03:49:45 2011, Jenny, Summary, PSL, NPRO PDH-Locked to Ref Cav LIGO_block_diagram_2.pngopenlooperror.jpgIMG_3034.JPGclosedlooperror.jpg
    Reply  Fri Aug 12 20:33:57 2011, Dmass, Summary, PSL, NPRO PDH-Locked to Ref Cav TMP_INT_TF.pdf
Message ID: 5202     Entry time: Fri Aug 12 03:49:45 2011     Reply to this: 5217
Author: Jenny 
Type: Summary 
Category: PSL 
Subject: NPRO PDH-Locked to Ref Cav 

DMass and I locked the NPRO laser (Model M126-1064-700, S/N 238) on the AP table to the reference cavity on the PSL table using the PDH locking setup shown in the block diagram below (the part with the blue background):




A Marconi IFR 2023A signal generator outputs a sine wave at 230 kHz and 13 dBm, which is split. One output of the splitter drives the laser PZT while the other is sent to a 7dBm mixer. Also sent to the mixer is the output of a photodiode that is detecting the reflected power from off the cavity. (A DC block is used so that only RF signal from the PD is sent to the mixer). The output of the mixer goes through an SR560 low-noise preamp, which is set to act as a low pass filter with a gain of 5 and a pole at 30 kHz. That error signal is then sent to the –B port of the LB1005 PDH servo, which has the following settings: PI corner at 10kHz, LF gain limit of 50 dB, and gain of 2.7 (1.74 corresponds to a decade, so the signal is multiplied by 35). The output signal from the LB1005 is added to the 230 kHz dither using another SR560 preamp, and the sum of the signals drive the PZT.


I am monitoring the transmission through the cavity on a digital oscilloscope (not shown in the diagram) and with a camera connected to a TV monitor. I sweep the NPRO laser temperature set point manually until the 0,0 mode of the carrier frequency resonates in the cavity and is visible on the monitor. Then I close the loop and turn on the integrator on the LB1005.


The laser locks to the cavity both when the error signal is sent into the A port and when it is sent into the –B port of the PDH servo. I determined that –B is the right sign by comparing the transmission through the cavity on the oscilloscope for both ways.


When using the A port, the transmission when it was locked swept from ~50 to ~200 mV (over ~10 second intervals) but had large high frequency fluctuations of around +/- 50 mV. Looking at the error signal on the oscilloscope as well, the RMS fluctuations of the error signal were at best ~40 mV peak to peak, which was at a gain of 2.9 on the LB1005.


Using the –B port yielded a transmission that swept from 50 to 250 mV but had smaller high frequency fluctuations of around +/- 20 mV. The error signal RMS was at best 10mV peak to peak, which was at a gain of 2.7. (Although over the course of 10 minutes the gain for which the error signal RMS was smallest would drift up or down by ~0.1).



The open loop error signal peak-to-peak voltage was 180 mV, which is more than an order of magnitude larger than the RMS error signal fluctuations when the loop is closed, indicating that it is staying in the range in which the response is linear.



In the above plot the transmission signal is offset by 0.1 V for clarity.

Below is the closed loop error signal. The inset plot shows the signal viewed over a 1.6 ms time period. You can see ~60 microsecond fluctuations in the signal (~17 kHz)


The system remained locked for ~45 minutes, and may have stayed locked for much longer, but I stopped it by opening the loop and turning off the function generator. Below is a picture of the transmitted light showing up on a monitor, the electronics I'm using, and a semi-ridiculous mess of wires.




I determined that it’s not dangerous to leave the system locked and leave for a while. The maximum voltage that the SR560 will output to the PZT is 10Vpp. This means that it will not drive the PZT at more than +/-5 V DC. At low modulation rates, the PZT can take a voltage on the order of 30 Vpp, according to the Lightwave Series 125-126 user’s manual, so the control signal will not push the PZT too hard such that it’s harmful to the laser.



ELOG V3.1.3-