Since last week, I've been working on building the photosensor head and have been making adjustments to my photosensor circuit box.
Changes to photosensor circuit (for box):
1) Last week, I was reading in the two signals from the two heads through a single input. Now there are two separate inputs for the two separate photosensors
2)During one of my many voltage regulator replacements, I apparently used a 7915 voltage regulator instead of a 7805 (thanks, Koji, for pointing that out! I never would have caught that mistake X___X)
3)I was powering my 5V voltage regulator with 10V...Now I'm using 15 V (now I only need 1 power supply and 3 voltage input plugs)
I have also began assembling my first photosensor head. Here is what I have so far:

Here is what needs to be done still for the photosensor head
I need to find four Teflon washers and nuts to rigidly attach the isolated PCB (PCB, Teflon sheet combination) to the box. I already have the plastic screws in (I want to use plastic and Teflon for electrical isolation purposes, so as to not short my circuit).
I need to attach the sheath of my signal cable to the box of the photosensor head for noise reduction (plan: drill screw into photosensor head box to wrap sheath wires around)
I need to attach the D-sub to the other end of my signal cable so that it can connect to the circuit box. So far, I only have the D-sub to connect the cable to my photosensor head
Yesterday, Suresh helped to walk me through the photosensor box circuit so that I now understand what voltages to expect for my circuit box trouble-shooting. After this lesson, we figured out that the problem with my photosensor box was that the two op-amps were saturated (so I fixed the feedback!). After replacing the resistor, I got the LED to light up! I still had problems reading the voltage signals from the photodiodes. I was reading 13.5V from the op amp output, but Koji explained to me that this meant that I was too close to saturation (the photodiodes were perhaps producing too much photocurrent, bringing the output close to saturation). I switched the 150 K resistor in the feedback loop to a 3.4K resistor and have thus successfully gotten displacement-dependent voltage outputs (i.e. the voltage output fluctuates as I move my hand closer and farther from the photosensor head).
Now that I have a successful circuit to power and read outputs from one photosensor, I can begin working on the other half of the circuit to power the other photosensor!

|