The f2p measurements are done on ETMX and ITMX with the real time lockin systems.
I don't explain what is the f2p measurement in this entry, but people who are interested in it can find some details on an old elog entry here or somewhere on DCC.
So far the resultant filters looked reasonable compared with the previous SRM f2p filters.
- backgrounds -
Some times ago I found that the coils on ETMX had not been nicely balanced, and it made a POS to angle coupling when I tried green locking (see here).
In addition to that, accuracy of A2L kind of measurement including the dithering techniques depend on how well the coils are balanced. Therefore we need to balance the coils basically at all the suspended optics.
There used to be a script for this particular purpose, called f2praio.sh. This script does measure the imbalances and then balance the coils.
However this time I used the realtime lockin system to measure the imbalances instead of using the old f2p script.
One of the reasons using the real time system is that, some of the ezca and tds commands for the old script don't work for some reasons.
Therefore we decided to move on to the real time system like Yuta did for the A2L measurement a couple of months ago.
The f2p measurement finally gives us parameters to generate a proper set of filters for POS and also the coil gains. We apply those filters and the gains in order to eliminate the POS to angle coupling and to balance the coils.
- results -
The followers are the resultant filters and coil gains.
The plots below show new f2p filters according to the measurement.

ITMX (assuming pendulum POS has f0 = 1 Hz and Q = 1)
ULPOS fz = 1.009612 Qz = 1.009612
URPOS fz = 1.125965 Qz = 1.125965
LLPOS fz = 0.873725 Qz = 0.873725
LRPOS fz = 0.974418 Qz = 0.974418
C1:SUS-ITMY_ULCOIL_GAIN -1.103044
C1:SUS-ITMY_URCOIL_GAIN 0.884970
C1:SUS-ITMY_LLCOIL_GAIN 0.950650
C1:SUS-ITMY_LRCOIL_GAIN -1.060326
ETMX (assuming pendulum POS has f0 = 1 Hz and Q = 1)
ULPOS fz = 1.055445 Qz = 1.055445
URPOS fz = 1.052735 Qz = 1.052735
LLPOS fz = 0.944023 Qz = 0.944023
LRPOS fz = 0.941600 Qz = 0.941600
C1:SUS-ETMX_ULCOIL_GAIN -0.887550
C1:SUS-ETMX_URCOIL_GAIN 1.106585
C1:SUS-ETMX_LLCOIL_GAIN = 1.07233
C1:SUS-ETMX_LRCOIL_GAIN -0.931013
The precision of the coil gains looked something like 1% because every time I ran the measurement script, the measured imbalances fluctuated at this level.
The precision of the filter gain at DC (0.01 Hz) could be worse, because the integration cycles for the measurement are fewer than that of the coil gains done at high frequency (8.5 Hz).
Of course we can make the precisions by increasing the integration cycles and the excitation amplitudes, if we want to. |