40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Feb 18 18:46:08 2011, kiwamu, Summary, SUS, f2p done on ETMX and ITMX f2p_ITMX.pngf2p_ETMX.png
    Reply  Fri Feb 18 20:06:59 2011, kiwamu, Summary, SUS, check f2p function on ETMX  f2p_ETMX.png
Message ID: 4326     Entry time: Fri Feb 18 18:46:08 2011     Reply to this: 4327
Author: kiwamu 
Type: Summary 
Category: SUS 
Subject: f2p done on ETMX and ITMX 

The f2p measurements are done on ETMX and ITMX with the real time lockin systems.

I don't explain what is the f2p measurement in this entry, but people who are interested in it can find some details on an old elog entry here or somewhere on DCC.

So far the resultant filters looked reasonable compared with the previous SRM f2p filters.

 

- backgrounds -

  Some times ago I found that the coils on ETMX had not  been nicely balanced, and it made a POS to angle coupling when I tried green locking (see here).

In addition to that, accuracy of A2L kind of measurement including the dithering techniques depend on how well the coils are balanced.  Therefore we need to balance the coils basically at all the suspended optics.

There used to be a script for this particular purpose, called f2praio.sh. This script does measure the imbalances and then balance the coils.

However this time I used the realtime lockin system to measure the imbalances instead of using the old f2p script.

One of the reasons using the real time system is that,  some of the ezca and tds commands for the old script don't work for some reasons.

Therefore we decided to move on to the real time system like Yuta did for the A2L measurement a couple of months ago.

The f2p measurement finally gives us parameters to generate a proper set of filters for POS and also the coil gains. We apply those filters and the gains in order to eliminate the POS to angle coupling and to balance the coils.

 

- results -

The followers are the resultant filters and coil gains.

The plots below show new f2p filters according to the measurement.

f2p_ITMX.png       f2p_ETMX.png

 

ITMX (assuming pendulum POS has f0 = 1 Hz and Q = 1)

ULPOS  fz = 1.009612   Qz = 1.009612 

URPOS fz = 1.125965   Qz = 1.125965  

LLPOS  fz = 0.873725   Qz = 0.873725    

LRPOS  fz = 0.974418   Qz = 0.974418  

C1:SUS-ITMY_ULCOIL_GAIN      -1.103044

C1:SUS-ITMY_URCOIL_GAIN      0.884970

C1:SUS-ITMY_LLCOIL_GAIN      0.950650

C1:SUS-ITMY_LRCOIL_GAIN      -1.060326

 

 

ETMX (assuming pendulum POS has f0 = 1 Hz and Q = 1)

ULPOS  fz = 1.055445   Qz = 1.055445   

URPOS  fz = 1.052735   Qz = 1.052735   

LLPOS  fz = 0.944023   Qz = 0.944023   

LRPOS  fz = 0.941600   Qz = 0.941600   

C1:SUS-ETMX_ULCOIL_GAIN      -0.887550

C1:SUS-ETMX_URCOIL_GAIN      1.106585

C1:SUS-ETMX_LLCOIL_GAIN = 1.07233

C1:SUS-ETMX_LRCOIL_GAIN      -0.931013

  

The precision of the coil gains looked something like 1% because every time I ran the measurement script, the measured imbalances fluctuated at this level.

The precision of the filter gain at DC (0.01 Hz) could be worse, because the integration cycles for the measurement are fewer than that of the coil gains done at high frequency (8.5 Hz).

Of course we can make the precisions by increasing the integration cycles and the excitation amplitudes, if we want to.

ELOG V3.1.3-