40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Nov 19 03:43:33 2010, Kevin, Update, Electronics, REFL55 Characterizations 
    Reply  Fri Nov 19 15:51:50 2010, Koji, Update, Electronics, REFL55 Characterizations 
Message ID: 3955     Entry time: Fri Nov 19 15:51:50 2010     In reply to: 3952
Author: Koji 
Type: Update 
Category: Electronics 
Subject: REFL55 Characterizations 

RF Transimpedance of 200Ohm means the residual impedance at the resonance (R_res) of 40,
if you consider the amplifier gain (G_amp) of 10 and the voltage division by the 50Ohm termination,
this corresponds to the thermal noise level of Sqrt(4 kB T R_res)*G_amp/2 = 4nV/rtHz at the analyzer, while you observed 35nV/rtHz.

35nV/rtHz corresponds to 7nV/rtHz for the input noise of the preamp. That sounds too big if you consider the voltage noise of opamp MAX4107 that is 0.75nV/rtHz.

What is the measurement noise level of the RF analyzer?

Quote:

[Koji, Rana, and Kevin]

I have been trying to measure the shot noise of REFL55 by shining a light bulb on the photodiode and measuring the noise with a spectrum analyzer. The measured dark noise of REFL55 is 35 nV/rtHz. I have been able to get 4 mA of DC current on the photodiode but have not been able to see any shot noise.

I previously measured the RF transimpedance of REFL55 by simultaneously measuring the transfer functions of REFL55 and a new focus 1611 photodiode with light from an AM laser. By combining these two transfer functions I calculated that the RF transimpedance at 55 MHz is ~ 200 ohms. With this transimpedance the shot noise at 4 mA is only ~ 7 nV/rtHz and would not be detectable above the dark noise.

The value of 200 ohms for the transimpedance seems low but it agrees with Alberto's previous measurements. By modeling the photodiode circuit as an RLC circuit at resonance with the approximate values of REFL55 (a photodiode capacitance of 100 pF and resistance of 10 ohms and an inductance of 40 nH), I calculated that the transimpedance should be ~ 230 ohms at 55 MHz. Doing the same analysis for the values of REFL11 shows that the transimpedance at 11 MHz should be ~ 2100 ohms. A more careful analysis should include the notch filters but this should be approximately correct at resonance and suggests that the 200 ohm measurement is correct for the current REFL55 circuit.

 

ELOG V3.1.3-