This week I have completed following tasks:
1. Worked out the analytical expressions for the amount of power of the DC and oscillatory part going into the camera.
2. Realigned the He-Ne PhaseCam setup as we had to replace the first steering mirror after the laser with a silvered mirror ( one without a dielectric coating for 1064 nm).
3. Gone through the code written by a previous surfer (Zach Cummings).
4. Read the paper 'Real-time phase-front detector for heterodyne interferometers'- F. Cervantes et. el. where they talk about constructing a phase detector for LISA pathfinder mission. One interesting fact I found was that, they used InGaAs chip for their CCD Cam which has a amazing QE of 80% @ 1064 nm. Unfortunately, the one we are using (Micro MT9V022 CMOS) has only ~5% QE for 1064 nm and 50% for 633 nm. One top of it MT9V022 has a built-in infra-red filter infront of it to make it more insenstive to 1064. In such limitations, we may have to find a work-around for this issue. Any idea?
5. Read about the EOM and AOM and their vibrating (!) way to add on and alter the incident light on them. (Source: Intro to Optical Electronics-Yariv)
One task that we couldn't accomplish even though I planned on doing is:
1. Move,if possible, to the Nd:YAG setup.
Task for this week:
1. Produce breathtaking calibration of the camera at He-Ne setup.
2. Read 'Fringe Analysis'-Y.Surrel and 'Phase Lock Technique'-Gardner.
3. Modify the phasecam code.
4. Produce an alternate triggerbox using diodes instead of Op-Amp as op-amp is suspected to fail at some point driving the camera due to impedance mismatch.
5. Answer Koji's question at Aidan's ELOG . |