40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Tue Apr 27 22:28:58 2010, Zach, Update, IOO, MC alignment MC_misaligned.png
    Reply  Wed Apr 28 12:05:44 2010, Zach, Update, IOO, MC alignment 
       Reply  Wed Apr 28 14:15:58 2010, Alberto, Update, IOO, MC alignment 
          Reply  Wed Apr 28 14:42:55 2010, Zach, Update, IOO, MC alignment 
Message ID: 2852     Entry time: Tue Apr 27 22:28:58 2010     Reply to this: 2855
Author: Zach 
Type: Update 
Category: IOO 
Subject: MC alignment 

Beginning last week, I have been helping Koji with some of the IO work that must be done for the 40m upgrade. The first thing he asked me to do is to help with the alignment of the MC.

As I understand, it became apparent that the IFO beam was not centered on all (or any) of the MC mirrors, which is disadvantageous for obvious reasons. We are trying to correct this, using the following strategy:

  1. Adjust the MC mirrors into rough alignment, isolate a strong TEM00, and lock the cavity
  2. Fine-tune the alignment by minimizing the REFL power when locked (in these first two steps, we adjusted only MC2 & MC3, assuming that the REFL beam was centered on the PD, and wanting to keep it that way). At this point, the cavity is resonating some asymmetric mode, looking something like (not to scale---for illustration only):MC_misaligned.png
  3. Shake all three mirrors (in succession) in pitch and yaw, each time demodulating the error signal at the frequency used for the excitation and recording the magnitude and phase of the response.
  4. Move one mirror's DC orientation, repeat step 3, and then restore the mirror to its original position
  5. Repeat step 4 for both angular degrees of freedom of each mirror

Using the results of these measurements, it is possible to evaluate the components of a block-diagonal matrix M which relates the tilt-to-displacement coupling of each DOF to each mirror's misalignment in that degree, i.e.,

a = M x

with a a 6-dimensional vector containing the coupling of each degree of freedom to the length of the cavity and x a 6-dimensional vector containing the angular misalignments of each. Due to orthogonality of pitch and yaw, M will take the form of a 6x6 matrix with two non-zero 3x3 blocks along the diagonal and zero matrices on the off-diagonal blocks.

The idea is to isolate components of M by moving one mirror at a time, solve for them, then find the inverse M-1 that should give us the required angular adjustments to obtain the beam-centered ideal cavity mode.

In theory, this need only be done once; in practice, our measurement error will compound and M will not be accurate enough to get the beams exactly centered, so we will have to iterate.

NOTE: The fact that we are adjusting the three cavity mirrors to obtain the ideal mode means that we will necessarily tarnish our coupling into the cavity. Once we have adjusted the mirrors once, we will need to re-steer the input beam and center it on the REFL diode. 

Status: This process has been completed once through step 5. I am in the process of trying to construct the matrix for the first adjustment.

 

ELOG V3.1.3-