The assembly of the head is nearly complete, I thought I'd do some characterization before packaging everything up too nicely. I noticed that the tapped holes in the base are odd-sized. According to the official aLIGO drawing, these are supposed to be 4-40 tapped, but I find that something in between 2-56 and 4-40 is required - so it's a metric hole? Maybe we used some other DCC document to manufacture these parts - does anyone know the exact drawings used? In the meantime, the circuit is placed inside the enclosure with the back panel left open to allow some tuning of the trim caps. The front panel piece for mounting the SMA feedthroughs hasn't been delivered yet so hardware-wise, that's the last missing piece (apart from the aforementioned screws).
Attachment #1 - the circuit as stuffed for the RF frequencies of relevance to the 40m.
Attachment #2 - measured TF from the "Test Input" to Quadrant #1 "RF Hi" output.
- There is reasonable agreement, but not sure what to make of the gain mismatch at most frequencies.
- The photodiode itself hasn't been installed yet, so there will be some additional tuning required to account for the interaction with the photodiode's junction capacitance.
- I noticed that the Qs of the resonances in between the notches is pretty high in this config, but the SPICE model also predicts this, so I'm hopeful that they will be tamed once the photodiode is installed.
- One thing that is worrying is the feature at ~170 MHz. Could be some oscillation of the LM opamp. All the aLIGO WFS test procedure documentation shows measurements only out to 100 MHz. Should we consider increasing the gain of the preamp from x10 to x20 by swapping the feedback resistor from 453 ohms to 1 kohm? Is this a known issue at the sites?
- Any other comments?
Update 11 Dec: For whatever reason, whoever made this box decided to tap 4-40 holes from the bottom (i.e. on the side of the base plate), and didn't thread the holes all the way through, which is why I was unable to get a 4-40 screw in there. To be fair the drawing doesn't specify the depth of the 4-40 holes to be tapped. All the taps we have in the lab have a maximum thread length of 9/16" whereas we need something with at least 0.8" thread length. I'll ask Joe Benson at the physics workshop if he has something I can use, and if not, I'll just drill a counterbore on the bottom side and use the taps we have to go all the way through and hopefully that does the job.
The front panel I designed for the SMA feedthroughs arrived today. Unfortunately, it is impossible for the D-sub shaped holes in this box to accommodate 8 insulated SMA feedthroughs (2 per quadrant for RF low and RF high) - while the actual SMA connector doesn't occupy so much space, the plastic mold around the connector and the nut to hold it are much too bulky. For the AS WFS application, we will only need 4 so that will work, but if someone wants all 8 outputs (plus an optional 9th for the "Test Input"), a custom molded feedthrough will have to be designed.
As for the 170 MHz feature - my open loop modeling in Spice doesn't suggest a lack of phase margin at that frequency so I'm not sure what the cause is there. If this is true, just increasing the gain won't solve the issue (since there is no instability at least by the phase margin metric). Could be a problem with the "Test Input" path I guess. I confirmed it is present in all 4 quadrants. |