Summary:
I found that there is an issue with the MC1 slow bias voltages.
Details:
I usually offload the DC part of the output voltage from the WFS servos to the slow bias voltage sliders, so as to preserve maximum actuation range from the fast system. However, today, I found that this servo wasn't working well at all. So I dug a little deeper. Looking at the EPICS database records:
- The user-facing channels are "PIT" and "YAW" bias voltages.
- These are converted to voltages to be sent to individual coils by some calc channels in the EPICS database record. So, for example, the voltage to be sent to the "UL" coil (Upper Left, as viewed from the AR side of the optic), is A+B, where A is the "PIT" voltage and B is the "YAW" voltage. Similar combinations of A and B are used for the other 3 face coils.
- The problem is obvious - if either A or B > 5V, then the requested voltage to be sent to the UL coil is > 10 V, while the Acromag DACs can put out a maximum of 10 V.
- As it happens, with the IFO currently aligned, MC1 is the only optic which faces this problem.
- Why has this not been an issue before? In fact, looking at some old data, the "PIT" and "YAW" bias voltages to MC1 were both ~1-2 V in 2018. But I confirmed that something in the region of ~5 V is required from each of the "PIT" and "YAW" channels to bring the MCREFL spot back to the center of the camera, so something has changed the DC alignment of MC1, maybe an earthquake or something? Anyway, with these settings, 2/4 coils are basically saturated, and so we can only move the optic diagonally. 😢
- Other coils that have requested output voltages > 5V (so more than half the range of the DAC) include MC2 LL (5.2V), and ETMX LL and LR (5.5 and 5.8 V respectively).
- Either a factor of 0.5 should be included in all the EPICS database records, or else, we should make the "PIT" and "YAW" sliders range only from -5 to +5 V, so that this kind of misleading info isn't wasting time.
|