Some short notes, more details tomorrow.
- I was able to make it to CARM on RF only ~10 times tonight.
- Highest stable circulating power was ~200 (recycling gain ~10) but the control scheme is still not finalized in terms of offsets etc.
- DARM to RF transition was never fully engaged - I got to a point where the ALS gain was reduced to <half its nominal value, but IMC always lost lock.
- CARM loop UGF of ~5 kHz was realized. I was also able to turn on a regular boost. But couldn't push the gain up much more than this. Should probably modify the boosts on this board, their corner frequencies are pretty high.
- The increased FSS flakiness post c1psl upgrade is definitely hurting this effort, there are periods of ~20-30mins when the IMC just wont lock.
Attachment #1 shows time series of some signals, from the time I ramp of ALS CARM control to a lockloss. With this limited set of signals, I don't see any clear indication of the cause of lockloss, but I was never able to keep the lock going for > a couple of mins.
Attachment #2 shows the CARM OLTF. Compared to last week, I was able to get the UGF a little higher. This particular measurement doesn't show it, but I was also able to engage the regular boost. I did a zeroth order test looking at the CM_SLOW input to make sure that I wasn't increasing the gain so much that the ADC was getting saturated. However, I did notice that the pk-to-pk error signal in this locked, 5kHz UGF state was still ~1000 cts, which seems large?
Attachment #3 shows the DTT measurement of the relative gains of DARM A and B paths. This measurement was taken when the DARM_A gain was 1, and DARM_B gain was 0.015. On the basis of this measurement, DARM_B (=AS55) sees the excitation injected 16dB above the ALS signal, and so the gain of the DARM_B path should be ~0.16 for the same UGF. But I was never able to get the DARM_B gain above 0.02 without breaking the lock (admittedly the lockloss may have been due to something else).
Attachment #4 shows a zoomed in version of Attachment #1 around the time when the lock was lost. Maybe POP_YAW experienced too large an excursion?
Some other misc points:
- It was much quicker to acquire the PRMI lock with CARM held off resonance using the 1f signals rather than 3f - so I did that and then once the lock is acquired, transfer control to 3f signals (using CDS ramptime) before zeroing the CARM offset.
- The whole process is pretty speedy - it takes <5mins to get to the CARM on RF only stage provided the PRMI lock doesn't take too long (the transition from POX/POY to ALS sequence takes <1min).
- I am wondering what the correct way to set the offsets for the 3f error signals is?
- The arm buildup is strongly dependent on the DC alignment of the PRMI - the best buildups I got were when I tweaked the BS alignment after the CARM offset was zeroed.
|