{Yehonathan, Meenakshi}
We measure the IMC transfer function using SR785.
We hook up the AOM driver to the SOURCE OUT, Input PD to CHANNEL ONE and the IMC transmission PD to CHANNEL TWO.
We use the frequency response measurement feature in the SR785. A swept sine from 100KHz to 100Hz is excited with an amplitude of 10mV.
Attachment 1 shows the data with a fit to a low pass filter frequency response.
IMC pole frequency is measured to be 3.795KHz, while the ringdowns predict a pole frequency 3.638KHz, a 4% difference.
The closeness of the results discourages me from calibrating the PDs' transfer functions.
I tend to believe the pole frequency measurement a bit more since it coincides with a linewidth measurement done awhile ago Gautam was telling me about.
Thoughts:
I think of trying to try another zero-order ringdown but with much smaller excitation than what used before (500mV) and than move on to the first-order beam.
Also, it seems like the reflection signal in zero-order ringdown (Attachment 2, green trace) has only one time constant similar to the full extinction ringdown. The reason is that due to the fact the IMC is critically coupled there is no DC term in the electric field even when the extinction of light is partial. The intensity of light, therefore, has only one time constant.
Fitting this curve (Attachment 3) gives a time constant of 18us, a bit too small (gives a pole of 4.3KHz). I think a smaller extinction ringdown will give a cleaner result. |