Summary:
I managed to partially stabilize the arm citculating powers - they stay in a region in which the REFL 11 signal is hopefully approximately linear and so I can now measure some loop TFs and tweak the transition appropriately.
Procedure:
The main change I made tonight was to look at the REFL11 signal as I swept the ALS CARM offset through 0. I found that the maximum arm powers coincided with a non-zero REFL11 signal value (i.e. a small CARM offset was required at the input to the CARM_B filter bank). Not so long ago, I had measured the PM/AM ratio for 11 MHz to be ~10^5 - so it's not entirely clear to me where this offset is coming from. Then, I was able to turn on the integrator (z:p = 20:0) in the CARM_B filter bank while maintaining high POP_DC. At this point, I ramped up the IN2 gain on the IMC servo board (= AO path), and was able to further stabilize the power.
Attachment #1 shows this sequence from earlier in the evening. Note that in this state, both ALS and IR control of CARM is in effect. The circulating power is fluctuating wildly - partly this is probably the noisy ALS control path, but there is also the issue of the (lack of) angular control - although looking at the transmon QPDs and the POP QPD signals, they seem pretty stable.
The next step will be to try and turn off the ALS control path. Eventually, I hope to transition DARM control to AS55 as well. But at this point, I can at least begin to make sense of some of the time series signals, and get some insight into how to improve the lock.
Quote: |
No systematic diagnosis scheme comes to mind.
|
|