{Gautam, Yehonathan}
In search of the source of discrepancy between the QPD readings in the X and Y arms, we look into the schematics of the QPD amplifier - DCC #D990272.
We find that there are 4 gain switches with the following gain characteristics (The 40m QPD whitening board has an additional gain of 4.5):
S4 |
S3 |
S2 |
S1 |
V/A |
0 |
0 |
0 |
0 |
2e4 |
0 |
0 |
0 |
1 |
2e5 |
0 |
0 |
1 |
0 |
4e4 |
0 |
0 |
1 |
1 |
4e5 |
0 |
1 |
0 |
0 |
1e5 |
0 |
1 |
0 |
1 |
1e6 |
0 |
1 |
1 |
0 |
2e5 |
0 |
1 |
1 |
1 |
2e6 |
1 |
|
|
0 |
5e2 |
1 |
|
|
1 |
5e3 |
Switch 4 bypasses the amps controlled by switch 2 and 3 when it is set to 1 so they don't matter in this state.
Note that according to elog-13965 the switches are controlled through the QPD whitening board by a XT1111a Acromag whose normal state is 1.
Also, according to the QPD amplifier schematics, the resistor on the transimpedance, controlled by switch 1, is 25kOhm. However, according to the EPICS it is actually 5kOhm. We verify this by shining the QPD with uniform light from a flashlight and switching switch1 on and off while measuring the voltages of the different segments. The schematics should be updated on the DCC.
Surprisingly, QPDX switches where 0,0,0,0 while QPDY switches where 1,0,0,1. This explains the difference in their responses.
We check by shining a laser pointer with a known power on the different segments of QPDX that we get the expected number of counts on the ADC and that the response of the different segments is equal.
gautam edits:
- Lest there be confusion, the states of the switches in the (S1, S2, S3, S4) order are (0,0,0,0) for QPDX and (0,1,0,1) for QPDY.
- The Acromag XT1111 is a sinking BIO unit - so when the EPICS channel is zero, the output impedance is low and the DUT (i.e. MAX333) is shorted to ground. So, the state of the MAX333 shown on the schematics corresponds to EPICS logic level 1, and the switched state corresponds to logic level 0.
- For the laser pointer test, we used a red laser pointer. Using a power meter, we measured ~100uW of 632nm power. However, we think this particular laser pointer had failing batteries or something because the spot looked sometimes brighter/dimmer to the eye. Anyways, we saw ~10,000 ADC counts when illuminating a single segment (with the QPD gain switches at the 0,0,0,0 setting, before we changed anything). We expect 100uW * 0.4 A/W * 500 V/A * 10 * 40 * 4.5 * 3267.8 cts/V = ~12000 cts. So everything seems to check out. We changed the gain to the 5kohm setting and bypassed the subsequent gain stages, and saw the expected response too. The segments were only balanced to ~10%, but presumably this can be adjusted by tweaking digital gains.
|