40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Oct 4 00:32:24 2019, gautam, Update, ALS, More locking updates ALS_singleArm.pngALS_OOL_20191003.pdf
    Reply  Sat Oct 5 21:26:34 2019, gautam, Update, ALS, Y-end green alignment tweaked ALSY_alignment.pngALSY_OOL.pdf
       Reply  Sun Oct 6 15:23:27 2019, gautam, Update, ALS, Arm control using error signals achieved ALSY_20191006.pdftransitionIRALS.pngarms_ALS.pdf
Message ID: 14944     Entry time: Sun Oct 6 15:23:27 2019     In reply to: 14943
Author: gautam 
Type: Update 
Category: ALS 
Subject: Arm control using error signals achieved 

Summary:

I managed to execute the first few transitions of locking the arm lengths to the laser frequency in the CARM/DARM basis using the IR ALS system 🎉 🎊 . The performance is not quite optimized yet, but at the very least, we are back where we were in the green days.

Details:

  1. Locking laser frequency to Y arm cavity length using MC2 as a frequency actuator
    • This is the usual diagnostic done to check the single-arm ALS noise using POY as an out of loop sensor.
    • The procedure is now scripted - I had to guess the sign and optimize the gains a few times, but this works deterministically now. 
    • Script lives at /opt/rtcds/caltech/c1/scripts/YARM/Lock_ALS_YARM.py.
    • Attachment #1 shows the result. If we believe the POY sensor calibration, the RMS displacement noise is ~6 pm
  2. Encouraged by the good performance of the Y arm, I decided to try the overall transition from the POX/POY basis to the CARM/DARM basis using ALS error signals.
    • The procedure starts with the arm cavities locked with POX/POY, and the respective green frequencies locked to the arm cavity length by the end PDH servos.
    • The DFD outputs serve as the ALS error signals - the PSL frequency is adjusted to the average value of DFD_X_OUT and DFD_Y_OUT.
    • I changed the LSC output matrix element for DARM-->ETMX from -1 to -5, to make it symmetric in actuation force w.r.t. ETMY (since the series resistane on ETMX is x5 that on ETMY).
    • After some guesswork, I fould the right signs for the gains. After enabling the boosts etc, I was able to keep both arms (approximately) on resonance for several minutes. See Attachment #2 for the time series of the transition process - the whole thing takes ~ 1 minute. 
    • A script to automate this procedure lives at /opt/rtcds/caltech/c1/scripts/ALS/Transition_IR_ALS.py.
    • The transition isn't entirely robust when executed by script - the main problem seems to be that in the few seconds between ramping off the IR servos and enabling the CARM/DARM integrators/boosts, the DARM error-point offset can become rather large. Consequently, when the integrator is engaged, ETMX/ETMY get a large kick that misalign the cavity substantially, degrade the green lock, and destroy the CARM lock as well. The problem doesn't seem to exist for the CARM loop. 
    • Anyways, I think this is easily fixed, just need to optimize sleep times and handoff gains etc a bit. For now, I just engage the DARM boosts by hand, putting in a DARM offset if necessary to avoid any kicking of the optic.
    • Attachment #3 shows the length noise witnessed by POX/POY when the arm cavities are under ALS control. If we believe the sensor calibration, the RMS displacement noise is ~15 (20) pm for the Y (X) arm.
    • This is rather larger than I was hoping would be the case, and the RMS is dominated by the <1 Hz "mystery noise".
    • Nevertheless, for a first pass, it's good to know that we can achieve this sort of ALS performance with the new IR ALS system.

Over the week, I'll try some noise budgeting, to improve the performance. The next step in the larger scheme of things is to see if we can lock the PRMI/DRMI with CARM detuned off resonance.

Attachment 1: ALSY_20191006.pdf  21 kB  Uploaded Sun Oct 6 16:26:55 2019  | Hide | Hide all
ALSY_20191006.pdf
Attachment 2: transitionIRALS.png  233 kB  Uploaded Sun Oct 6 16:40:58 2019  | Hide | Hide all
transitionIRALS.png
Attachment 3: arms_ALS.pdf  36 kB  Uploaded Sun Oct 6 16:41:04 2019  | Hide | Hide all
arms_ALS.pdf
ELOG V3.1.3-