DATED, SEE ELOG14941 for the most up-to-date info on latch.py.
I wrote (/cvs/cds/caltech/target/c1iscaux3/latch.py) and tested the logic illustrated in Attachment #1. Results of a test are shown in Attachment #2, the various channels change as expected. Note that for negative values of the gain channel, the corresponding "BITS" channel will take on values like 65536 - this is because the mbboDirect data type is a 16 bit data type, and presumably the MSB is the sign bit. A bit mask is applied to this channel before the actual BIO unit bits are set - we should verify that the correct behavior happens, but I don't immediately see any problems.
To me, this is a robust logic, but it will benefit from more sets of eyes giving it a look over. The idea is to run this continuously on the Supermicro machine.
Apart from this, I also fixed some errors in the mbboDirect record syntax - so now I am able to start up the EPICS server without it throwing any error messages. It remains to verify that changing an EPICS gain slider results in the appropriate gain bits being flipped in the correct way (on the hardware side, I think the correct behavior is happening on the software end). For this testing, I turned off the old c1iscaux crate at ~10am, and started up the server on c1iscaux3. I am reverting to the nominal config now (~1pm).
Further testing will require the wiring inside the Acromag chassis to be completed. This should be the priority task for next week.
*Update 1130 22 July 2019: I've now installed the required dependencies on c1iscaux3 and setup the latch.py script to run as a systemctl process dependent on modbusIOC.service. |