Rana and I talked about some (genius) options for the large range DC bias actuation on the SOS, which do not require us to supply high-voltage to the OSEMs from outside the vacuum.
What we came up with (these are pretty vague ideas at the moment):
- Some kind of thermal actuation.
- Some kind of electrical actuation where we supply normal (+/- 10 V) from outside the vacuum, and some mechanism inside the chamber integrates (and hence also low-pass filters) the applied voltage to provide a large DC force without injecting a ton of sensor noise.
- Use the blue piers as a DC actuator to correct for the pitch imbalance --- Kruthi and Milind are going to do some experiments to investigate this possibility later today.
For the thermal option, I remembered that (exactly a year ago to the day!) when we were doing cavity mode scans, once the heaters were turned on, I needed to apply significant correction to the DC bias voltage to bring the cavity alignment back to normal. The mechanism of this wasn't exactly clear to me - furthermore, we don't have a FLIRcam picture of where the heater radiation patter was centered prior to my re-centering of it on the optic earlier this year, so we don't know what exactly we were heating. Nevertheless, I decided to look at the trend data from that night's work - see Attachment #1. This is a minute trend of some ETMY channels from 0000 UTC on 18 July 2018, for 24 hours. Some remarks:
- We did multiple trials that night, both with the elliptical reflector and the cylindrical setup that Annalisa and Terra implemented. I think the most relevant part of this data is starting at 1500 UTC (i.e. ~8am PDT, which is around when we closed shop and went home). So that's when the heaters were turned off, and the subsequent drift of PIT/YAW are, I claim, due to whatever thermal transients were at play.
- Just prior to that time, we were running the heater at close to its maximum rated current - so this relaxation is indicative of the range we can get out of this method of actuation.
- I had wrongly claimed in my discussion with Rana this morning that the change in alignment was mostly in pitch - in fact, the data suggests the change is almost equal in the two DoFs. Oplev and OSEMs report different changes though, by almost a factor of 2....
- The timescale of the relaxation is ~20 minutes - what part(s) of the suspension take this timescale to heat up/cool down? Unlikely to be the wire/any metal parts because the thermal conductivity is high?
- In the optimistic scenario, let's say we get 100 urad of actuation range - over 40m, this corresponds to a beam spot motion of ~8mm, which isn't a whole lot. Since the mechanism of what is causing this misalignment is unclear, we may end up with significantly less actuation range as well.
- I will repeat the test (i.e. drive the heater and look for drift in the suspension alignment using OSEMs/Oplev) in the afternoon - now I claim the radation pattern is better centered on the optic so maybe we will have a better understanding of what mechanisms are at play.
Also see this elog by Terra.
Attachment #2 shows the results from today's heating. I did 4 steps, which are obvious in the data - I=0.6A, I=0.76A, I=0.9A, and I=1.05A.
In science, one usually tries to implement some kind of interpretation. so as to translate the natural world into meaning. |