40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 14315     Entry time: Sun Nov 25 17:41:43 2018
Author: Jon 
Type: Omnistructure 
Category:  
Subject: Vacuum Controls Upgrade - Status and Plans 

New hardware has been installed in the vacuum controls rack. It is shown in the below post-install photo.

  • Supermicro server (c1vac) which will be replacing c1vac1 and c1vac2.
  • 16-port Ethernet switch providing a closed local network for all vacuum devices.
  • 16-port IOLAN terminal server for multiplexing/Ethernetizing all RS-232 serial devices.

Below is a high-level summary of where things stand, and what remains to be done.

Completed:

 Set up of replacement controls server (c1vac).

  • Supermicro 1U rackmount server, running Debian 8.5.
  • Hosting an EPICS modbus IOC, scripted to start/restart automatically as a system service.
  • First Ethernet interface put on the martian network at 192.168.113.72.
  • Second Ethernet interface configured to host a LAN at 192.168.114.xxx for communications with all vacuum electronics. It connects to a 16-port Ethernet switch installed in the vacuum electronics rack.
  • Server installed in vacuum electronics rack (see photo).

 Set up of Acromag terminals.

  • 6U rackmount chassis frame assembled; 15V DC, 24V DC, and Ethernet wired.
  • Acromags installed in chassis and configured for the LAN (5 XT1111 units, 2 XT1121 units).

 EPICS database migration.

  • All vacuum channels moved to the modbus IOC, with the database updated to address the new Acromags. [The new channels are running concurrently at "C1:Vac2-...." to avoid conflict with the existing system.]
  • Each hard channel was individually tested on the electronics bench to confirm correct addressing and Acromag operation.

 Set up of 16-port IOLAN terminal server (for multiplexing/Ethernetizing the serial devices).

  • Configured for operation on the LAN. Each serial device port is assigned a unique IP address, making the terminal server transparent to client TCP applications.
  • Most of the pressure gauges are now communicating with the controls server via TCP.

Ongoing this week:

  • [Jon] Continue migrating serial devices to ports on the terminal server. Still left are the turbo pumps, N2 gauge, and RGA.
  • [Jon] Continue developing Python code for communicating with gauges and pumps via TCP sockets. A beta version of gauge readout code is running now.
  • [Chub] Install feedthrough panels on the Acromag chassis. Connect the wiring from feedthrough panels to the assigned Acromag slots.
  • [Chub/Jon] Test all the hard EPICS channels on the electronics bench, prior to installing the crate in the vacuum rack.
  • [Chub/Jon] Install the crate in the vacuum rack; connect valve/pump readbacks and actuators; test each hard EPICS channel in situ.
  • [Jon] Once all the signal connections have been made, in situ testing of the Python interlock code can begin.
Attachment 1: rack_photo.jpg  2.041 MB  | Hide | Hide all
rack_photo.jpg
ELOG V3.1.3-