40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Wed Mar 25 01:37:35 2009, rana, yoichi, Summary, IOO, No Reference Cavity Required 
    Reply  Wed Apr 1 23:18:07 2009, rana, koji, Summary, IOO, No Reference Cavity Required 
Message ID: 1425     Entry time: Wed Mar 25 01:37:35 2009     Reply to this: 1451
Author: rana, yoichi 
Type: Summary 
Category: IOO 
Subject: No Reference Cavity Required 
We were wondering if we need to have a reference cavity. One possible reason to have one is to reduce the free running
frequency noise by some level so that the MC can handle it. According to my manifesto,
the free running noise of the laser is (10 kHz / f) Hz/rHz. The mode cleaner loop gain is sufficient to reduce this to
0.001 Hz/rHz everywhere below 1 kHz - radiation pressure noise and coating thermal noise limit the mode cleaner below
these levels.

So, since it seems like the reference cavity is superfluous (except for the 1 - 10 kHz band), we unlocked it and locked the
MC by feeding back directly to the laser.

In the old set up, the low frequency feedback is to MC2 and the high frequency to the VCO which actuates the FSS which
drives the NPRO PZT and the Pockel cell.

In this new way, we take the MC board's output to the VCO (the TNC monitor point) and send that to the TEST IN1 of the FSS
box. The FSS box then splits the drive to go to the PZT and the PC path. We also turned off the 40:4000 filter in the MC
board and inverted the sign of the MC FAST path.
Good settings for acquisition:
MC INPUT GAIN = 6 dB
40:4000        Disable
FAST polarity  MINUS
VCO Gain       -3 dB
MC LIMITER     Disable

FSS TEST1      TEST
FSS CG         -3 dB
FSS FG         13 dB

After our initial locking success, we realized that the new MC-FSS loop is conditionally stable: the old loop relied on
the 40 kHz refcav pole to make it stable. The new loop has a 4 kHz pole and so the phase lag in the MC-PZT path is too
much. We need to build a passive lead filter (40 kHz : 4 kHz) in a Pomona box to compensate.

There are several more issues:

- I think this will make the whole CM servo handoff easier: there is no more handoff.

- This will make the lock acquisition fringe velocity higher by a factor of the arm/mc length (40 m / 13 m) since
the frequency will be slewing around along with MC2 now. However, Jenne's FF system ought to take care of that.

- Having the laser frequency stabilized to the MC during lock acquisition will make all of the error signals quieter
immediately. This can only be good.

- If we can make this work here, it should translate to the sites directly since they have exactly the same electronics.
ELOG V3.1.3-