Basic Pump Throughput Concepts
What is Pump Throughput?
The manufacturer of a vacuum pump supplies a chart for each pump showing pumping speed (volume in unit time) vs pressure. The example, for a fictitious pump, shows the pumping speed is substantially constant over a large pressure range.
By multiplying pumping speed by pressure at which that pumping speed occurs, we get a measure called pump throughput. We can tabulate those results, as shown in the table below, or plot them as a graph of pressure vs pump throughput. As is clear from the chart, pump throughput (which might also be called mass flow) decreases proportionally with PRESSURE, at least over the pressure range where pumping speed is constant.
Pumping Speed |
Pressure |
Pressure x Pumping Speed |
100 L/sec |
10 torr |
1000 torr.liter/sec |
100 L/sec |
1 torr |
100 torr.liter/sec |
100 L/sec |
0.1 torr |
10 torr.liter/sec |
100 L/sec |
0.01 torr |
1 torr.liter/sec
|
The roughing pump speed actually will reach 0 l/s at it's ultimate pressure performance.
Our roughing pump pumping speed will slowly drop as chamber pressure drops. Below 10 Torr this decrease is accelerated and bottoms out. This where the Root pump can help. See NASA evaluation of dry rough pumps...What is a root pump
We have been operating succsessfully with a narrow margin. The danger is that the Maglev forline peaks at 4 Torr. This puts load on the small turbo TP2, TP3 & large TP1
The temperature of these TP2 & 3 70 l/s drag turbos go up to 38 C and their rotation speed slow to 45K rpm from 50K rpm because of the large volume 33,000 liters
Either high temp or low rotation speed of drag turbo or long time of overloading can shut down the small turbo pumps......meaning: stop pumping, wait till they cool down
The manual gate valve installed helped to lower peak temp to 32C It just took too long.
We have been running with 2 external fans [one on TP1 & one on TP3] for cooling and one aux drypump to help lowering the foreline pressure of TP2 & 3
The vacuum control upgrade should include adding root pump into the zero pumping speed range.
Atm1, Pump speed chart: TP1 turbo -red, root pump -blue and mechanical pump green. Note green color here representing an oily rotory pump. Our small drypumps [SH-100] typically run above 100 mTorr
They are the forepump of TP2 & 3 Our pumpdown procedure: Oily Leybold rotory pumps ( with safety orifice 350 mT to atm ) rough to 500 mTorr
Here we switch over to TP2 & 3 running at 50k RPM with drypumps SH-100 plus Aux Triscroll
TP1- Maglev rotating full speed when V1 is opened at full volume at 500 mTorr
History: the original design of the early 1990s had no dry scroll pumps. Oil free dry scrools replaced the oily forepumps of TP2 & TP3 in ~2002 at the cost of degrading the forline pressure somewhat.
We had 2 temperature related Maglev failers in 2005 Aug 8 and 2006 April 5 Osaka advised us to use AUX fan to cool TP1 This helped.
Atm2, Wanted Root pump - Leybold EcoDry 65 plus
Atm3, Typical 8 hrs pumpdown from 2007 with TP2 & 3
Atm4, Last pumpdown zoomed in from 400 mT to 1mT with throttled gate valve took 9 hrs The foreline pressure of TP1 peaked at 290 mT, TP3 temperature peaked at 32C
This technic is workable, but 9 hrs is too long.
Atm5, The lowest pressure achived in the 40m Vacuum Envelope 5e-7 Torr with pumps Maglev ~300 l/s, Cryo 1500 l/s and 3 ion pumps of 500 l/s [ in April 2002 at pumpdown 53 day 7 ] with annuloses at ~ 10 mTorr
Atm6, Osaka TG390MCAB Throughput with screen ~300 L/s at 12 cfm backing pump |