[Sandrine, Koji, Terra]
Summary: We completed multiple scans at different heating powers for the reflector set up, observing unique HOM peak shifts of tens of kHz. We also observed HOM5 shifts with the cylinder set up. Initial Lorentzian fittings of the magnitude give tens of Hz resolution. I summarize the main week's work below.
Set-up
Heater set-up is described in several previous elogs, but attachments #1 and #2 show the full heater set-up and wiring/pinouts in and out of vacuum, since we're all intimately aware of how confusing in-vacuum pinouts can be. We are not using the Sorenson power supply (as described in 14071); we just have the BKPrecision power supply 1735 sitting next to the ETMY rack and are manually going out to turn on/off.
We've continued to use the scan setup described in elog 14086, which is run using /users/annalisa/postVent/AGfast.py. Step by step notes for setting up the scan, running the scans, and processing the scans are attached in notes.txt.
Inducing/witnessing HOMs
The aux input beam was already clipped and on wednesday (after Trans was centered, 14093) we also clipped the output aux beam with razor blade (angled vertically and horizontally, elog 14103) before PDA255; we clipped ~1/3 of the output beam. Attachment #3 shows before and after clipping output, where orange 'cold' == unclipped, black 'mean' == clipped (all in cold state). Up to HOM5 is visible.
Measurements
Below is a summary of the available scan data. We also have cold (0A) scans CAR-HOM5 and full FSR scans for most configurations.
Elliptic Reflector
current[A] |
voltage[V] |
power[W] |
scans |
0.4 |
2 |
0.8 |
CAR-HOM3(x1) |
0.5 |
3.4 |
1.7 |
CAR-HOM3(x1) |
0.6 |
5 |
3.0 |
CAR-HOM3(x1) |
0.8 |
9.4(9.7) |
7.5(7.8) |
CAR-HOM5(>x5) |
0.9 |
12 |
10.8 |
CAR-HOM5(x4) |
1.09 |
17 |
18.5 |
CAR-HOM3 |
Cylinder + Lenses
current[A] |
voltage[V] |
power[W] |
scans |
0.9 |
15 |
13.5 |
CAR-HOM5(odds x4) |
We tried the cylinder set-up again tonight for the first time since inital try and can see shifts of HOM5 - see attachment #5; we haven't looked in detail yet, but it looks like odd modes are more effected, suggesting the ring heat pattern is off centered from the beam axis.
Scan data is saved in the following format: users/annalisa/postVent/scandata/{reflector,cylinder}/{parsed,unparsed}/{CAR,HOM1,HOM2,HOM3,HOM4,HOM5}{_datetime}{_parsed,_unparsed}.{txt,pdf}
Minimum heating
On 7/26 we increased the power to the elliptical reflector heater in steps to find the minimum heater power required to see frequency shifts with our measurement setup. Lowest we can resolve is a shift in HOM3 with 1.7W (0.5A/3.4V). According to Annalisa's measurements in elog 14050, this would be something like 30-60 mW radiated power hitting the test mass. We only looked at CAR - HOM3 for this investigation; data for scans at 0.4A, 0.5A, 0.6A is available as indicated above.
Lorentizian Fitting
The Lorentzian fitting was done using the equation a + b / sqrt(1+((x-c)/d*2), where a = constant background, b = peak height above background, c = peak frequency, d = full width at half max.
The fitting is still being edited and optimized. We will crop the data to zoom in around the peak more.
The Lorentzian fit of the magnitude shows ~10Hz of resolution. (See attachment 6 for the carrier at 8A and attachment 7 for HOM 1 at 9A)
We're working on fitting the full complex data.
|