(Johannes, Koji, Keerthana)
The PLL loop ensures that the frequency difference between the PSL laser and the AUX laser is equal to the frequency we provide to the Local Oscillator (LO) with the help of a Marconi. Only a small pick off part of both the AUX and PSL lasers are going to the PLL loop. The other part of both the lasers are going to the interferometer. Before entering into the optical fibre, the AUX laser passes through an AOM which changes its frequency by an amount of 80MHz. When the PLL is locked, the frequency coming out of the PLL will be equal to the frequency set up in the Marconi (fm). When it passes through AOM, the frequency becomes fdiff = fm ±80 MHz. If this frequency beam and the PSL laser beam is aligned properly, and if this frequency is equal to the product of an integer and the free spectral range of the cavity, this will resonate in the cavity. Then we expect to get a peak in the ETM transmission spectrum corresponding to the frequency we injected through the optical Fibre.
Through out the experiment we need to make sure that the PSL is locked. Thus, the signal detected by the photo detector when only PSL is resonating inside the cavity, act as a DC signal. Then we give a narrow scan to the Marconi. When fdiff = N*FSRy this condition is satisfied, we will observe a peak in the output. Here FSRy is the free spectral range of the cavity which is approximately equal to 3.893 MHz.
Yesterday afternoon, Johannes, Koji and myself tried to observe this peak. We aligned the cavity by observing the output signal from the AS100 photo detector. We made the alignment in such a way that the intensity output getting from this photo detector is maximum. We used a Spectrum analyser to see the output. After that we connected a photo detector to collect the YEND transmission signal from the ETM mirror. We used a lens to focus this directly to the photodetector. Then we connected this photodetector to the spectrum analyser, which was located near the AS table. We took a large cable to meet this purpose. But still the cable was not lengthy enough, so we joined it with another cable and finally connected it with the spectrum analyser. Then we gave a scan to the Marconi from 51 MHZ to 55 MHz. We repeated this experiment with a scan of 55 MHz to 59 MHz also. We repeated this a few times, but we were not able to see the peak.
We assume that this can be because of some issue with the alignment or it can be because of some issue with the photo detector we used. We would like to repeat this experiment and get the signal properly.
I am attaching a flow chart of the setup and also a picture of the mirrors and photo detector we inserted in the Y-End table.