[steve,gautam]
We tried to estimate what the load cell measurement should yield. Here is the weight breakdown (fudge factor for Al table is to try and account for tapped holes):
Element
|
Diameter [m]
|
Height [m]
|
Density [kg/m^3]
|
Mass [kg]
|
Number or fudge factor
|
Dim in inches
|
Table |
1.22 |
0.08 |
2700.00 |
240.07 |
0.85 |
Dia=48", thickness=3" |
Stack leg |
0.36 |
0.13 |
8000.00 |
100.85 |
9 |
Dia=14", thickness=5" |
Base plate |
1.37 |
0.05 |
8000.00 |
600.18 |
1 |
Dia=60",thickness=2" |
Base rods |
0.10 |
1.83 |
8000.00 |
118.55 |
2 |
Dia=4", length=6ft |
Stuff on table |
|
|
|
100.00 |
|
|
Blue beams |
|
|
|
100.00 |
|
|
|
|
|
|
|
|
|
Total [kg] |
|
|
|
2149.01 |
|
|
Total [lbs] |
|
|
|
4835.28 |
|
|
- Steve pointed out that there is some material removed from the stack legs for stability (hollows into which the viton springs fit). These countersinks have dimensions of diameter=2", height=1.75". So if we assume each leg has 10% less mass, the total weight becomes ~4600lbs.
- I think we will need to use one more load cell (i.e. total 4) for this measurement (we have more load cells, just need to setup one more controller).
- Steve is looking into acquiring some low profile jacks to deal with the fact that we only have limited travel range on the overall stack height because of the bellows.
- A useful document, from which we pulled some numbers (which also look reasonable using estimated dimensions and density calculations): P952005
|