Here are a couple of preliminary plots of the noise from a 20minute stretch of data - the new curve is the orange one, labelled sensing, which is the spectrum of the PIT/YAW error signal from the HeNe beam single bounce off a single steering mirror onto the QPD, normalized to account for the difference in QPD sum. The peaky features that were absent in the dark noise are present here.
I am a bit confused about the total sum though - there is ~2.5mW of light incident on the PD, and the transimpedance gain is 10.7kohm. So I would expect 2.5e-3 mW * 0.4A/W * 10.7 kV/A ~ 10.7V over 4 quadrants. The ADC is 16 bit and has a range +/- 10V, so 10.7 V should be ~35,000 cts. But the observed QPD sum is ~14,000 counts. The reflected power was measured to be ~250uW, so ~10% of the total input power. Not sure if this is factored into the photodiode efficiency value of 0.4A/W. I guess there is some fraction of the QPD that doesn't generate any photocurrent (i.e. the grooves defining the quadrants), but is it reasonable that when the Oplev beam is well centered, ~50% of the power is not measured? I couldn't find any sneaky digital gains between the quadrant channels to the sum channel either... But in the Oplev setup, the QPD had ~250uW of power incident on it, and was reporting a sum of ~13,000 counts with a transimpedance gain of 100kohm, so at least the scaling seems to hold...
I guess we wan't to monitor this over a few days, see how stationary the noise profile is etc. I didn't look at the spectrum of the intensity noise during this time.
Quote: |
I've setup a test setup on the ITMY Oplev table. Details + pics to follow, but for now, be aware that
Here are some pics of the setup: https://photos.app.goo.gl/DHMINAV7aVgayYcf1.None of the existing Oplev input/output steering optics were touched. Steve can make modifications as necessary, perhaps we can make similar mods to the SRM Oplev QPD and the BS one to run the HeNe test for a few days...
|
|