[steve, gautam]
What is the best way to set this test up?
I think we need a QPD to monitor the spot rather than a single element PD, to answer this question about the sensor noise. Ideally, we want to shoot the HeNe beam straight at the QPD - but at the very least, we need a lens to size the beam down to the same size as we have for the return beam on the Oplevs. Then there is the power - Steve tells me we should expect ~2mW at the output of these HeNes. Assuming 100kohm transimpedance gain for each quadrant and Si responsivity of 0.4A/W at 632nm, this corresponds to 10V (ADC limit) for 250uW of power - so it would seem that we need to add some attenuating optics in the way.
Also, does anyone know of spare QPDs we can use for this test? We considered temporarily borrowing one of the vertex OL QPDs (mark out its current location on the optics table, and move it over to the SP table), but decided against it as the cabling arrangement would be too complicated. I'd like to use the same DAQ electronics to acquire the data from this test as that would give us the most direct estimate of the sensor noise for supposedly no motion of the spot, although by adding 3 optics between the HeNe and the QPD, we are introducing possible additional jitter couplings...
Quote: |
For the OL NB, probably don't have to fudge any seismic noise, since that's a thing we want to suppress. More important is "what the noise would be if the suspended mirrors were no moving w.r.t. inertial space".
For that, we need to look at the data from the OL test setup that Steve is putting on the SP table.
|
|