I brought the DEI Pulser unit and a suitable Pockels cell over from Bridge today (I also found an identical Pockels cell already at the 40m on the SP table, now that I knew what to look for).
I also brought the 200MHz AOM (Crystal Technology 3200-1113) along which can achieve rise times of 10 ns(!). Before I start setting up the Pockels cell I wanted to try this different AOM and look at its switching behavior. It asks for a much smaller beam (<65 um diam.) than what's currently in the path to the fiber (500 um diam.), although it's clear aperture is technically big enough (~1mm diam.). So I still tried, and the result was a somewhat elliptical deflected beam, and the slower decay was again visible after switching the RF input.
I was using the big Fluke function generator for the 200MHz seed signal, a Mini Circuits ZASWA-2-50 switch and a Mini Circuits ZHL-5W-1 amplifier. For the last two I moved two power supplies (+/-5V for the switch and +24V for the amplifier) into the PSL enclosure. I started at low seed power on the Fluke, routing the amplified signal into a 20dB attenuator before measuring it with an RF power meter. The AOM saturates at 2.5W (34 dBm), which I determined is achieved with a power setting on the Fluke of -4 dBm. As expected, this AOM performed faster (~80ns fall time) but I again observed the slower decay.
This struck me as weird and I started swapping components other than the AOM, which I probably should have done before. It turned out that it was the PD I was using (the same PDA10CF Gautam had used for his MC ringdown investigations). When I changed it to a PDA10A (Si diode, 150MHz bandwidth) the slow decay vanished! One last round of crappy screenshots:

Rather than proceeding with the Pockels cell, tomorrow I will make the beam in the AOM smaller and hope that that takes care of the ellipticity. If it does: the AOM can theoretically switch on ~10ns timescale, same for the switch (5-15ns typical), and the amplifier is non-resonant and works up to 500MHz, so it shouldn't be a limiting factor either. If this doesn't work out, we can still have ~100ns switching times with the other AOMs. |