40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Sat Jul 15 01:28:53 2017, jigyasa, Update, Cameras, BRDF Calibrations 
    Reply  Sat Jul 15 13:40:59 2017, rana, Update, Cameras, BRDF Calibrations 
       Reply  Sun Jul 16 11:58:36 2017, jigyasa, Update, Cameras, BRDF Calibrations 
          Reply  Sun Jul 16 12:09:47 2017, jigyasa, Update, Cameras, BRDF Calibrations 
Message ID: 13118     Entry time: Sat Jul 15 01:28:53 2017     Reply to this: 13119
Author: jigyasa 
Type: Update 
Category: Cameras 
Subject: BRDF Calibrations 

This evening, Gautam helped me with setting up the apparatus for calibrating the GigE for BRDF measurements.
The SP table was chosen to set up the experiment and for this reason a few things including a laser and power meter (presumably set up by Steve) had to be moved around.

We initially started by setting up the Crysta laser with its power source (Crysta #2, 150-190 mW 1064 laser) on the SP table. The Ophir power meter was used to measure the laser power. We discovered that the laser was highly unstable as its output on the power meter fluctuated (kind of periodically) between 40 and 150 mW. The beam spot on the beam card also appeared to validate this change in intensity. So we decided to use another 1064 nm laser instead.
Gautam got the LightWave NPro laser from the PSL table and set it up on the SP table and with this laser the output as measured by the same power meter was quite stable.

We manually adjusted the power to around 150 mW. This was followed by setting up the half wave plate(HWP) with the polarizing beam splitter (PBS), which was very gently and precisely done by Gautam, while explaining how to handle the optics to me.
 On first installing the PBS, we found that the beam was already quite strongly polarized as there seemed to be zero transmission but a strong reflection.
With the HWP in place, we get a control over the transmitted intensity. The reflected beam is directed to a beam dump.
I have taken down the GigE(+mount) at ETMX and wired a spare PoE injector.
We tried to interface with the camera wirelessly through the wireless network extenders but that seems to render an unstable connection to the GigE so while a single shot works okay, a continuous shot on the GigE didn’t succeed.

The GigE was connected to the Martian via Ethernet cable and images were observed using a continuous shot on the Pylon Viewer App on Paola. 

We deliberated over the need of a beam expander, but it has been omitted presently. White printer paper is currently being used to model the Lambertian scatterer. So light scattered off the paper was observed at a distance of about 40 cm from the sample.
While proceeding with the calibrations further tonight, we realized a few challenges.

While the CCD is able to observe the beam spot perfectly well, measuring the actual power with the power meter seems to be tricky. As the scattered power is quite low, we can’t actually see any spot using a beam card and hence can’t really ensure if we are capturing the entire beam spot on the active region of the power meter (placed at a distance of ~40cm from the paper) or if we are losing out on some light, all the while ensuring that the power meter and the CCD are in the same plane.

We tried to think of some ways around that, the description of which will follow. Any ideas would be greatly appreciated.

Thanks a ton for all your patience and help Gautam! :) 

More to follow.. 

ELOG V3.1.3-