40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Wed May 17 18:08:45 2017, Dhruva, Update, Optical Levers, Beam Profiling Setup 1.jpg2.jpg3.jpg4.jpg5.jpg
    Reply  Mon May 22 10:53:02 2017, Dhruva, Update, Optical Levers, Beam Profiling Results  6x
       Reply  Tue May 23 10:27:24 2017, Dhruva, Update, Optical Levers, Beam Profiling Results  6x
          Reply  Tue May 23 15:22:04 2017, rana, Update, Optical Levers, Beam Profiling Results  
             Reply  Tue May 30 18:31:54 2017, Dhruva, Update, Optical Levers, Beam Profiling Results  plots.pdfspot_size_y.pdf
                Reply  Thu Jun 8 12:43:42 2017, Dhruva, Update, Optical Levers, Beam Profiling Results  profile.pdf
          Reply  Tue May 23 16:33:00 2017, Steve, Update, Optical Levers, Beam Profiling Results  
Message ID: 13053     Entry time: Thu Jun 8 12:43:42 2017     In reply to: 13021
Author: Dhruva 
Type: Update 
Category: Optical Levers 
Subject: Beam Profiling Results  

 

Quote:

​Updates in the He-Ne beam profiling experiment. ​

New and improved plots for the He-Ne profiling experiment 

Font size has been increased to 30. 

The plots are maximum size (Following Rana's advice, I saved the plots as eps files(maximized) and converted them to pdf later).

There is a shaded region around the trendline that represents the parameter error. 

Function that I fit my data to (should have mentioned this in my earlier elog entries) 

P = \dfrac{P_0}{2}\Bigg[1+erf\Big(\dfrac{\sqrt2(X-X_0)}{w}\Big) \Bigg]

Description of my error analysis -

1. I have assumed a 20% deviation from markings in the micrometer error. 

2. Using the error in the micrometer, I have calculated the propogated error in the beam power :

\delta P = \sqrt{\dfrac{2}{\pi}}{P_0}\dfrac{\delta x}{w}\exp\Bigg({\frac{-2(X-X_0)^2}{w^2}}\Bigg)

I added this error to the stastistical error due to the fluctuation of the oscilloscope reading to obtain the total error in power. 

3. I found the Fisher Matrix by numerically differentiating the function at different data points P_b with respect to the parameters p_i =  P_0, X_0 and w.

F_{ij} = \sum_{b} {\frac{\partial P_b}{\partial p_i}\frac{\partial P_b}{\partial p_j}}\frac{1}{\sigma^2_b}

I then found the covariance matrix by inverting the Fisher Matrix and found the error in spot size estimation. 

EDIT : Residuals added to plots and all axes made equal 

Attachment 1: profile.pdf  955 kB  Uploaded Thu Jun 8 20:35:49 2017  | Hide | Hide all
profile.pdf profile.pdf profile.pdf profile.pdf profile.pdf profile.pdf profile.pdf
ELOG V3.1.3-