Here are the details as promised.
Attachment #1: Updated simulink model. Since I haven't actually run this model, all the TF blocks are annotated "???", but I will post an updated version once I have run the model (and fix some of the questionable aesthetic choices)

Attachment #2: Measured and fitted transfer functions from the "IN1" input (where the demodulated MC REFL goes) to the "SERVO" output of the MC servo board (to FSS box). As mentioned in my previous elog, I had to put in a pole (fitted to be at ~2MHz, called pole 9 in the plot) in order to get good agreement between fit an measurement up to 10MHz. I didn't bother fitting all the high frequency features. Both gain sliders on the MEDM screen ("IN1 Gain" and "VCO gain") were set to 0dB for this measurement, while the super boosts were all OFF.

Attachment #3: Measured and fitted transfer function from "TEST 1 IN" to "FAST OUT" of the FSS box. Both gains on the FSS MEDM screen ("Common gain adjust" and "fast gain adjust") were set to 0dB for this measurement. I didn't need any ad-hoc poles and zeros for this fit (i.e. I can map all the fitted poles and zeros to the schematic), but the fit starts to deviate from the measurement just below 1 MHz.. perhaps I need to add a zero above 1MHz, but I can't see why from the schematic...

Attachment #4: Measured TF from "TEST 1 IN" to "PC OUT" on the FSS box. MEDM gains were once again 0dB. I can't get a good fit to this, mainly because I can't decipher the poles and zeros for this path from the schematic (there are actually deviations from the schematic posted on the 40m DCC page in terms of component values, I will try and correct whatever I notice) . I'll work on this...

Attachment #5: Data files + .fil files used to fit the data with LISO
Quote: |
Data + plots + fits + updated schematics to follow...
|
Most of the model has come together, I am not too far from matching the modelled OLG to the measured OLG. So I will now start thinking about designing the controller for the MCL part (there are a couple of TFs that have to be measured for this path). |