I've performed the temperature sweep of PSL vs Innolight 1W AUX laser.
- I followed the procedure in this elog - started by turning of FSS and FSS Slow servos, closed the PSL shutter, noted down the value of PSL temperature
- As noted in elog 3759, there are multiple temperatures at which a beat can be found. I recorded all that I could find. The IR beat frequency was < 20MHz at the temperatures recorded (and had an amplitude of a few dBm, but I used a 20dB coupler to look at the signal on the HP spectrum analyzer
- The PMC unlocked each time I changed the PSL temperature, but the PMC autolocker worked for me every time
- We should use curve 3 in attachment 1, it is the most reliable set of temperatures at which a beat can be found
- PSL diode current was 2.100A, AUX laser diode current was 2.001A
- Attachment 2 is the data
It remains to measure the output power vs diode current, and the beam profile. I will do the latter on the SP table where there is a little more space. Because we have 1W from this NPRO, the knife-edge method requires a power meter that has a large dynamic range and is sensitive enough to profile the beam accurately. After consulting the datasheets of the power meters we have available (Scientech, Ophir and Coherent) together with Koji, I have concluded that the Coherent calorimeter will be suitable. Its datasheet claims it can accurately measure incident powers of up to 100uW, although I think the threshold is more like 5-10mW, but this should still be plenty to get sufficient resolution for a Gaussian intensity profile with peak intensity of 1W. We also checked that the maximum likely power density we are likely to have during the waist measurement process (1W in a beam of diameter 160um) is within the 6kW/cm^2 quoted on the datasheet. |