40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Message ID: 12059     Entry time: Fri Apr 1 13:11:26 2016
Author: ericq 
Type: Update 
Category: WienerFiltering 
Subject: Bilinear Noise Testing 

I've been banging my head against bilinear noise subtraction, and figured I needed to test things on some real hardware to see if what I'm doing makes sense.

I ran the ASS dither alignment on the Y arm, which ensures that the beam spots are centered on both mirrors. 

I then drove ITMY in yaw with some noise bandpassed from 30-40 Hz. It showed the expected bilinear upconversion that you expect from angular noise on a centered beam, which you can see from 60-80 Hz below

I looked at the length signal, as the noise subtraction target, and the ITMY oplev yaw signal plus the transmon QPD yaw signal as witnesses.

There is some linear coupling to length, which means the the centering isn't perfect, and the drive is maybe large enough to displace it off center. However, the important part is the upconverted noise which is present only in the length signal. The QPD and oplev signals show no increased noise from 60-80Hz above the reference traces where no drive is applied

I then compared the multicoherence of those two angular witnesses vs. the multicoherence of the two (linear) witnesses plus their (bilinear) product. Including the bilinear term clearly shows coherence, and thereby subtraction potential, at the upconverted noise hump. 

So, it looks like the way I'm generating the bilinear signals and calculating coherence in my code isn't totally crazy.

Attachment 1: bilinear_drive.pdf  42 kB  | Show | Show all
Attachment 2: 40m_bilin.pdf  51 kB  | Show | Show all
ELOG V3.1.3-