In order to check the proper LO level, the IMC demod board was checked. As a short summary, -8dBm is the proper input for the IMC demod board. This was realized when the variable attenuator of the RF AM Stabilizer was set up be -7dB.
Initially, I tried to do the measurement using the extender board. But every board had the issue of +15V not working. After several extender boards were tried, I noticed that the current draw of the demod board burned the 15V line of the extender board.
Then I moved to the work bench. The signals were checked with the 10:1 probe. It's not properly the 50Ohm system, exactly to say.
I found that the LO signals at the mixers have huge distortion as it reaches the nominal 17dBm, and I wondered if ERA-5s were gone. Just in case I replaced the ERA-5s but didn't see any significant change. Then I thought it is due to the mixer itself. The mixer was removed and replaced with a 50Ohm SMD resister. Then the output of the last ERA-5 became sinusoidal, and the level was adjusted to be ~17dBm (4.52 Vpp) when the input power was measured to be -7.7dBm with the RF power meter. Once the mixer was reinstalled, it was confirmed that the waveform becase rectangular like, with the similar amplitude (4.42Vpp).
Now the module was returned to the rack. The RF level at the LO input was adjusted to be -8dBm by setting the attenuator level to be 7dBm.
Once the IMC is locked with this setting, the open loop transfer function was measured. The optical gain seemed almost unchanged compared with the recent nominal. The UGF and PM were measured to be 144kHz and 30deg. |