40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Aug 13 20:32:07 2015, Ignacio, Update, LSC, Working towards YARM FF  
    Reply  Thu Aug 13 23:57:33 2015, Ignacio, Update, LSC, YARM coherence plots YARM_psd.pngYARM_GUR1_COH.pngYARM_STS_COH.pngYARM_GUR1_COH.png
    Reply  Fri Aug 14 21:40:26 2015, Ignacio, Update, LSC, Quick static offline subtractions of YARM arms_wiener.png
    Reply  Sat Aug 15 02:10:35 2015, Ignacio, Update, LSC, MCL FF => YARM FF YARM_LIVES.png
    Reply  Wed Aug 19 00:55:35 2015, Ignacio, Update, LSC, LSC-YARM-EXC to LSC-YARM-IN1 TF measurement + error analysis master_plot.pngcoherence.png
Message ID: 11515     Entry time: Wed Aug 19 00:55:35 2015     In reply to: 11503
Author: Ignacio 
Type: Update 
Category: LSC 
Subject: LSC-YARM-EXC to LSC-YARM-IN1 TF measurement + error analysis 

Yesterday, Rana, Jessica and I measured the Transfer function from LSC-YARM-EXC to LSC-YARM-IN1. 

The plot below shows the magnitude and the phase of the measured transfer function. It also shows the normalized standard error in the estimated transfer function magnitude; the same quantity can be applied to the phase, only in this case it is interpreted as its standard deviation (not normalized). It is given by


where \gamma_{xy}^2(f) is the ordinary coherence function and n_{d} is the number of averages used at each point of the estimate, in the case here we used 9 averages. This quantity is of interest to us in order to understand how the accuracy of transfer function measurement affects the ammount of subtraction that can be achieved online.


Since this transfer function is flat from 1-10 Hz (out of phase by 180 deg), this means that we can apply our IIR wiener filters direclty into YARM without taking into account the TF by prefiltering our witnesses with it. Of course this is not the case if we care about subtractions at frequencies higher than 10 Hz, but since we are dealing with seismic noise this is not a concern.

The coherence for this transfer function measurement is shown below,

ELOG V3.1.3-