Jessica and I took 45 mins (GPS times from 1122099200 to 1122101950) worth of data from the following channels:
C1:IOO-MC_L_DQ (mode cleaner)
C1:LSC-XARM_IN1_DQ (X arm length)
C1:LSC-YARM_IN1_DQ (Y arm length)
and for the STS, GUR1, and GUR2 seismometer signals.
The PSD for MCL and the arm length signals is shown below,

I looked at the coherence between the arm length and each of the three seismometers, plot overload incoming below,
For the coherence between STS and XARM and YARM,

For GUR1,

Finally for GUR2,

A few remarks:
1) From the coherence plots, we can see that the arm length signals are coherent with the seismometer signals the most from 0.5 - 50 Hz. This is most evident in the coherence with STS. I think subtraction will be most useful in this range. This agrees with what we see in the PSD of the arm length signals, the magnitude of the PSD starts increasing from 1 Hz and reaches a maximum at about 30 Hz. This is indicative of which frequencies most of the noise is present.
2) Eric did not remember which of GUR1 and GUR2 corresponded to the ends of XARM and YARM. So, I went to the end of XARM, and jumped for a couple seconds to disturb whatever Gurald was in there. Using dataviewer I determined it was GUR1. Anyways, my point is, why is GUR1 less coherent with both arms and not just XARM? Since it is at the end of XARM, I was expecting GUR1 to be more coherent with XARM. Is it because, though different arms, the PSD's of both arms are roughly the same?
3) Similarly, GUR2 shows about the same levels of coherence for both arms, but it is more coherent. Is GUR2 noisier because of its location?
Code: ARMS_COH.m.zip |