40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Mar 5 21:42:05 2015, Jenne, Update, LSC, AS55Q flat at DARM zero crossing DARM_TimeSeries_5March2015.pdf
    Reply  Fri Mar 6 04:49:08 2015, Jenne, Update, LSC, AS55Q transition DARM_AS55Qnormalized_5March2015.png
Message ID: 11108     Entry time: Fri Mar 6 04:49:08 2015     In reply to: 11105
Author: Jenne 
Type: Update 
Category: LSC 
Subject: AS55Q transition 

[Jenne, Ranah]

We played around tonight with different possible ways of transitioning DARM to normalized AS55Q.  Before each try, we would use ezcaservo (or just eyeball it) to make sure that the normalized RF signals had a mean of zero, so that we knew we were pretty close to zero offset in both CARM and DARM.

We tried something that is similar in flavor to Kiwamu's self-locking technique - we summed in some normalized AS55Q to the DARM error point (using the DoF selector matrix that I created a few weeks ago), and then tried to engage a little low frequency boost.  We tried several times, but we never successfully made the transition.

In the end, we just did a direct transition over to normalized AS55Q, and lost lock after several seconds.  The buzzing that we hear didn't change noticeably after the transition, which indicates that most of the noise is due to CARM (which makes since, since it has a much smaller linewidth).  The problem with holding DARM is that occassionally we will have a CARM fluctuation that lets the arm power dip too low, and DARM's error signal isn't valid at low arm powers. So, we need to work on getting CARM stabilized before we will have a hope of holding on to DARM. 

Here's the lockloss plot from that last lock:

Also this evening, I scanned back and forth over the CARM zero crossing while locked on ALS, to see what the RF error signals looked like.  Normalized REFL55 seems to have much more high frequency noise near the edges of the linear range than does REFL11.  Also, the REFL 11 signal is much larger.  So, what I think I want to try to do is use ALS fool to lower the CARM noise by a bit, then make the DARM transition.  Then, we can come back to CARM and ramp up the gain. 

With these CARM sweeps, I think that I know the relative gain and sign between ALScomm and the normalized REFL signals, and the REFL signals versus the normalized versions.  I think that 100*REFL11I/(TRX+TRY) gives the same slope at the zero crossing as just plain REFL11I.  Same factor of 100 is true for REFL55I.  The REFL11 slope is 20,000 times larger than the ALS slope, while the REFL55 slope is -500 times the ALS slope (note that REFL55 has a minus sign).  We can probably trigger the Fool on when the arm powers are above 50, and trigger off when they're below 20.  For the zero crossings, the REFL55 threshold should be about 20, and the REFL11 threshold should be about 500. 

I also need to re-think the triggering logic for ALSfool.  We probably don't want the zero crossing logic to be able to un-trigger the lock, just in case we get an extra noise blip.  So, we want to trigger on with an AND, but only trigger off if the arm powers go too low.  Also, the zero crossing logic should look at the normalized error signals, not the plain signals.

We need to modify the ALSwatch logic so that it doesn't look at EPICS values for the thresholding.  There may be an updated filter module that includes a saturation monitor, but otherwise we can use the saturation monitor part that is in the OSC section of CDS_PARTS.  We'll set the threshold on this to match the limiter in the filter bank.  Then, if the filterbank output is constantly hitting the limiter, we should run the down scripts.

 

 

Attachment 1: DARM_AS55Qnormalized_5March2015.png  539 kB  | Hide | Hide all
DARM_AS55Qnormalized_5March2015.png
ELOG V3.1.3-