The goals are:
- When the REFL path is dead (e.g. S_REFL = 0), the system goes back to the ordinary ALS loop. => True (Good)
- When the REFL path is working, the system becomes insensityve to the ALS loop
(i.e. The ALS loop is inactivated without turning off the loop.) => True when (...) = 0
Are they correct?
Then I just repeat the same question as yesterday:
S is a constant, and Ps are cavity poles. So, approximately to say, (...) = 0 is realized by making D = 1/G_REFL.
In fact, if we tap the D-path before the G_REFL, we remove this G_REFL from (...). (=simpler)
But then, this means that the method is rather cancellation between the error signals than
cancellation between the actuation. Is this intuitively reasonable? Or my goal above is wrong? |