Okay, I have finished modifying the Xend QPD whitening board, although I will likely need to change the gain on Monday.
Rather than following my plan in elog 10782, I removed the AD602's entirely, and just use the AD620's as the amplifiers. We don't need remotely adjustable gains, and the AD620s are a less noisy part.
I set the gain to be 30dB using a 1.65k resistor for R_G, which turns out to be too high. After I installed the board and realized that my counts were much higher than they used to be, I realized that what we had been calling +30dB was in fact +13.2dB. ( I am assuming that the ADC for the gain sliders were putting out a maximum of +10V. The AD620 used to have a 1/10 voltage divider at the input, and an overall gain of 1, so the output of the AD620 was 100mV. This goes into pin 16 of the AD602, which has gain of 32*V_set + 10. Which gives 32*0.1+10=13.2dB. Ooops. We've been lying to ourselves. )
Anyhow, before I made the gain realization, I was happily going along, setting the AD620s' gains all to 30dB. I also copied Koji's modification from April of this year, and permanently enabled the whitening filters.
Here is the schematic of what ended up happening. The red modifications were already in place, and the greens are what I did today.

You can see the "before" picture in my elog Wednesday, elog 10774. Here is an "after" photo:

Here is a spectrum comparing the dark noise of the Xend QPD after modification to the current Yend QPD (which is still using the AD602 as the main instrumentation amplifier). I have given the Yend data an extra 16.8dB to make things match.

And, here is a set of spectra comparing both ends, dark noise versus single arm lock. While I'll have to sacrifice a lot of it, there's oodles more SNR in the Xend now. The Yend data still has the "gain fixing" extra 16.8dB.

The Xend quadrant input counts (before the de-whitening filters) now go up to peak values of about 1,000 at single arm lock. If (optimistically) the we got full power recycling and the arms got to powers of 300, that would mean we would have 300,000 counts, which is obviously way more than we actually have ADC range for. Currently, the Yend quadrant input counts go as high as 50, which with arm powers of 300 would give 15,000 counts. I think I need to bring the Xend gain down to about the level of the Yend, so that we don't saturate at full arm powers. I can't remember right now - are the ends 14-bit or 16-bit ADCs? If they're 16-bit, then I can set the gain somewhere between the current X and Y values.
Finally, I added a section of the 40m's DCC document tree for the QPD whitening: E1400473, with a page for each end. Xend = D1400414, Yend = D1400415. |