40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Thu Dec 4 00:26:07 2014, Jenne, Update, ASC, POP yaw razor blade installed ASC_PRCLloop_POP22err.pdfPRC_YAW_QPDvs22_3Dec2014.pdf
    Reply  Tue Dec 9 03:34:52 2014, Jenne, Update, ASC, POP yaw razor tuning PRC_YAW_QPDvs22_8Dec2014.pdf
Message ID: 10752     Entry time: Thu Dec 4 00:26:07 2014     Reply to this: 10768
Author: Jenne 
Type: Update 
Category: ASC 
Subject: POP yaw razor blade installed 

We would like the option of feeding back the POP beam position fluctuations to the PRM to help stabilize the PRC since we don't have oplevs for PR2 and PR3.  However, we cannot just use the DC QPD because that beam spot will be dominated by carrier light as we start to get power recycling. 

The solution that we are trying as of today is to look at yaw information of just the RF sidebands.  (Yaw is worse than pitch, although it would be nice to also control pitch).  I have placed a razor blade occluding about half of the POP beam in front of the POP PD (which serves POPDC, POP22 and POP110).  I also changed the ASS model so that I could use this signal to feed back to the PRM.  Loop has been measured, and in-loop spectra shows some improvement versus uncontrolled.


Optical table work:

The POP beam comes out of the vacuum system and is steered around a little bit, then about 50% goes to the DC QPD.  Of the remaining, some goes to the Thorlabs PD (10CF I think) and the rest goes to the POP camera.  For the bit that goes to the Thorlabs PD, there is a lens to get the beam to fit on the tiny diode.

There was very little space between the steering mirror that picks off the light for this PD, and the lens - not enough to put the razor blade in.  The beam after the lens is so small that it's much easier to occlude only half of the beam in the area before the lens.  (Since we don't know what gouy phase we're at, so we don't know where the ideal spot for the razor is, I claim that this is a reasonable place to start.)

I swapped out the old 50mm lens and put in a 35mm lens a little closer to the PD, which gave me just enough room to squeeze in the razor blade.  This change meant that I had to realign the beam onto the PD, and also that the demod phase angles for POP22 and POP110 needed to be checked.  To align the beam, before placing the razor blade, I got the beam close enough that I was seeing flashes in POPDC large enough to use for a PRMI carrier trigger.  The PRMI carrier was a little annoying to lock.  After some effort, I could only get it to hold for several seconds at a time.  Rather than going down a deep hole, I just used that to roughly set the POP22 demod phase (I -phase maximally negative when locked on carrier, Q-phase close to zero).  Then I was able to lock the PRMI sideband by drastically reducing the trigger threshold levels.  With the nice stable sideband-locked PRMI I was able to center the beam on the PD. 

After that, I introduced the razor blade until both POPDC and POP22 power levels decreased by about half. 

Now, the POP22 threshold levels are set to up=10, down=1 for both MICH and PRCL, DoF triggers and FM triggers.


ASS model work:

POP22 I and POP110 I were already going to the ASS model (where ASC lives) for the PRCL ASS dither readbacks.  So, I just had to include them in the ASC block, and increased the size of the ASC input matrix.  Now you can select either POP QPD pit, POP QPD yaw, POP221 or POP110I to go to either PRCL yaw, PRCL pit, CARM yaw or CARM pit. 

Compiled, installed and restarted the ASS model.


Engaging the servo:

I took reference spectra of POP QPD yaw and POP 22, before any control was applied.  The shapes looked quite similar, but the overall level of POP22 was smaller by a factor of ~200.  I also took a reference spectra of the POP QPD in-loop signal using the old ASC loop situation.

Q looked at Foton for me, and said that with the boost on, the UGF needed to be around 9 or 10 Hz, which ended up meaning a servo gain of +2.5 (the old POP QPD yaw gain was -0.063).  We determined that we didn't know why there was a high-Q 50Hz notch in the servo, and why there is not a high frequency rolloff, so right now the servo only uses FM1 (0:2000), FM6 (boost at 1Hz and 3Hz) and FM7 (BLP40). 

The in-loop residual isn't quite as good with POP22 as for the QPD, but it's not bad. 

Here's the loop:

ASC_PRCLloop_POP22err.pdf

And here's the error spectra.  Pink solid and light blue solid are the reference traces without control.  Pink dashed is the QPD in-loop.  Red and blue solid are the QPD and POP22 when POP22 is used as the error signal.  You can definitely see that the boosts in FM6 have a region of low gain around 1.5Hz.  I'm not so sure why that wasn't a problem with the QPD, but we should consider making it a total 1-3Hz bandpass rather than a series of low-Q bumps.  Also, even though the POP22 UGF was set to 9 Hz, we're not seeing any suppression above about 4Hz, and in fact we're injecting a bit of noise between 4-20Hz, which needs to be fixed still. 

PRC_YAW_QPDvs22_3Dec2014.pdf

ELOG V3.1.3-