40m QIL Cryo_Lab CTN SUS_Lab TCS_Lab OMC_Lab CRIME_Lab FEA ENG_Labs OptContFac Mariner WBEEShop
  40m Log  Not logged in ELOG logo
Entry  Fri Nov 21 18:23:01 2014, diego, Update, SUS, Anti-Jitter Telescope for OpLevs 14x
    Reply  Mon Nov 24 20:24:29 2014, diego, Update, SUS, Anti-Jitter Telescope for OpLevs 6x
Message ID: 10733     Entry time: Mon Nov 24 20:24:29 2014     In reply to: 10732
Author: diego 
Type: Update 
Category: SUS 
Subject: Anti-Jitter Telescope for OpLevs 

I stared a bit longer at the plots and thanks to Eric's feedback I noticed I payed too much attention to the comparison between Beta and Gamma and not enough attention to the fact that Beta has some zero-crossings...

I made new plots, focusing on this fact and using some real values for the focal lengths; some of them are still a bit extreme, but I wanted to plot also the zero-crossings for high values of x, to see if they make sense.

 

Plot of Beta and Gamma

 20141124_Plot_Real_BetaGamma_f.pdf

 

 

Plot of Beta and Gamma (zoom)

 

 20141124_Plot_Real_BetaGamma_f_Zoom.pdf

 

If we are not interested in the sign of our signals/noises (apart from knowing what it is), it is maybe more clear to see regions of interest by plotting Beta and Gamma in absolute value:

 

Plot of Beta and Gamma (Abs)

 20141124_Plot_Real_BetaGamma_Abs_f.pdf

 

 

I don't know if putting the telescope far from the QPD and near the mirror has some disadvantage, but that is the region with the most benefit, according to these plots.

 

The plots shown so far only consider the coefficients of the various terms; this makes sense if we want to exploit the zero-crossing of Beta's coefficient and see how things work, but the real noise and signal values also depend on the Alpha and Theta themselves. Therefore I made another kind of plot, where I put the ratio r'(Alpha)/r'(Theta) and called it Tau. This may be, in a very rough way, an estimate of our "S/N" ratio, as Alpha is the tilt of the mirror and Theta is the laser jitter; in order to plot this quantity, I had to introduce the laser parameters r and Theta (taken from the Edmund Optics 1103P datasheet), and also estimate a mean value for Alpha; I used Alpha = 200 urad. In these plots, the contribute of r'(r) is not considered because it doesn't change adding the telescope, and it is overall small.

In these plots the dashed line is the No Telescope case (as there is no variable quantity), and after the general plot I made two zoomed subplots for positive and negative focal lengths.

 

Plot of Tau (may be an estimate of S/N)

20141124_Plot_Real_Tau_f.pdf

 

 

Plot of Tau (positive f)

20141124_Plot_Real_Tau_f_Pos.pdf

 

Plot of Tau (negative f)

20141124_Plot_Real_Tau_f_Neg.pdf

 

If these plot can be trusted as meaningful, they show that for negative focal lengths our tentative "S/N" ratio is always decreasing which, given the plots shown before, it does little sense: although for these negative f Gamma never crosses zero, Beta surely does, so I would expect one singular value each.

Attachment 2: 20141124_Plot_Real_BetaGamma_f_Zoom.pdf  144 kB  | Hide | Hide all
20141124_Plot_Real_BetaGamma_f_Zoom.pdf
Attachment 3: 20141124_Plot_Real_BetaGamma_Abs_f.pdf  162 kB  | Hide | Hide all
20141124_Plot_Real_BetaGamma_Abs_f.pdf
ELOG V3.1.3-