So, with my last entry, I was guilty of just throwing stuff into the simulation and not thinking about physics... so I retreated to Siegman for some algebraic calculations of the additional Guoy phase accumulated by the HOMs in the arms -> their resonant frequencies -> the arm length offset where they should resonate. Really, this isn't completely precise, as I treated the arms independently, with slightly differing ETM radii of curvature, but I would expect the "CARM Arm" to behave as a sort of average of the two arm cavities in this regard. (EDIT: Also, I didn't really consider the effect of the coupled vertex cavities... so there's more to be done)
The basic idea I used was:
- Assume ITMs are effectively flat, infinite Rc
- Use 40mwiki values for ETM curvatures
- Each additional HG order adds arccos(sqrt(1 - Larm/Rc)) of Guoy phase for a one way trip down the cavity (Eqn 19.19 in Sigman)
- For each HOM order up to 5 of the carrier and first order sidebands, add the appropriate phase shift
- fold it onto +-FSR/2 of the carrier 00 resonance, convert to m
In practice, I threw together a python script to do this all and print out a table. I've highlighted the values within 10nm, but the closet one is 3.8nm
Results:
########## X Arm HOM Resonance Locations in nm ##########
Mode Order: 0 , 1 , 2 , 3 , 4 , 5
Carrier : +0, +156.21, -219.58, -63.376, +92.832, +249.04
LSB 11 : +59.563, +215.77, -160.02, -3.8126, +152.4, -223.4
USB 11 : -59.563, +96.645, +252.85, -122.94, +33.269, +189.48
LSB 55 : -234.18, -77.975, +78.233, +234.44, -141.35, +14.857
USB 55 : +234.18, -141.61, +14.6, +170.81, -204.98, -48.776
########## Y Arm HOM Resonance Locations in nm ##########
Mode Order: 0 , 1 , 2 , 3 , 4 , 5
Carrier : +0, +154.82, -222.35, -67.531, +87.292, +242.11
LSB 11 : +59.313, +214.14, -163.04, -8.218, +146.6, -230.57
USB 11 : -59.313, +95.51, +250.33, -126.84, +27.978, +182.8
LSB 55 : -235.43, -80.611, +74.212, +229.04, -148.14, +6.6809
USB 55 : +235.43, -141.74, +13.08, +167.9, -209.27, -54.452
Code is attached. Hopefully no glaring mistakes!
|