Assuming that these Watts/Newtons TFs are correct, I've modeled the resulting open loop gain for CARM. The goal is to design a loop that is stable under a wide range of offsets and also has enough low frequency gain.
The attached PDF shows this. I used a CARM OLG Simulink model:

I've replaced the 'armTF' block with a digital gain of zero. After measuring the open loop gain of all but this piece, I multiply that 'OLG' with the W/N that Jenne extracted from Optickle for CARM->TR (not sqrtInv)
I plot the resulting estimate of the actual OLG in the following plot. Since the CARM-RSE peak is moving down, we use the LP filter that Den installed for us several months ago. To account for the radiation pressure spring, we use some low frequency boosts but not the crazy FM4 filter.
As you can see, the loop is stable from 500 to 200 pm, but then goes unstable around 110 pm. I expect that we will want to do some fancy shaping there or switch from TRX+TRY into something else.
This assumes we have filters 0, 1, 3, 5, and 7 on in the CARM filter bank - still need to add the digital AA/AI to make the loop phase lag a little more accruate, but I think this is looking promising.
|